首页 | 本学科首页   官方微博 | 高级检索  
     


Asc1 Supports Cell-Wall Integrity Near Bud Sites by a Pkc1 Independent Mechanism
Authors:Daniel Melamed  Lavi Bar-Ziv  Yossi Truzman  Yoav Arava
Affiliation:Department of Biology, Technion – Israel Institute of Technology, Haifa, Israel.;University of Washington, United States of America
Abstract:

Background

The yeast ribosomal protein Asc1 is a WD-protein family member. Its mammalian ortholog, RACK1 was initially discovered as a receptor for activated protein C kinase (PKC) that functions to maintain the active conformation of PKC and to support its movement to target sites. In the budding yeast though, a connection between Asc1p and the PKC signaling pathway has never been reported.

Methodology/Principal Findings

In the present study we found that asc1-deletion mutant (asc1Δ) presents some of the hallmarks of PKC signaling mutants. These include an increased sensitivity to staurosporine, a specific Pkc1p inhibitor, and susceptibility to cell-wall perturbing treatments such as hypotonic- and heat shock conditions and zymolase treatment. Microscopic analysis of asc1Δ cells revealed cell-wall invaginations near bud sites after exposure to hypotonic conditions, and the dynamic of cells'' survival after this stress further supports the involvement of Asc1p in maintaining the cell-wall integrity during the mid-to late stages of bud formation. Genetic interactions between asc1 and pkc1 reveal synergistic sensitivities of a double-knock out mutant (asc1Δ/pkc1Δ) to cell-wall stress conditions, and high basal level of PKC signaling in asc1Δ. Furthermore, Asc1p has no effect on the cellular distribution or redistribution of Pkc1p at optimal or at cell-wall stress conditions.

Conclusions/Significance

Taken together, our data support the idea that unlike its mammalian orthologs, Asc1p acts remotely from Pkc1p, to regulate the integrity of the cell-wall. We speculate that its role is exerted through translation regulation of bud-site related mRNAs during cells'' growth.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号