首页 | 本学科首页   官方微博 | 高级检索  
   检索      


New Device for High-Throughput Viability Screening of Flow Biofilms
Authors:Michael R Benoit  Carolyn G Conant  Cristian Ionescu-Zanetti  Michael Schwartz  A Matin
Institution:Microbiology & Immunology Department, Stanford University, Stanford, California 94305-5124,1. Fluxion Biosciences Inc., South San Francisco, California 940802.
Abstract:Control of biofilms requires rapid methods to identify compounds effective against them and to isolate resistance-compromised mutants for identifying genes involved in enhanced biofilm resistance. While rapid screening methods for microtiter plate well (“static”) biofilms are available, there are no methods for such screening of continuous flow biofilms (“flow biofilms”). Since the latter biofilms more closely approximate natural biofilms, development of a high-throughput (HTP) method for screening them is desirable. We describe here a new method using a device comprised of microfluidic channels and a distributed pneumatic pump (BioFlux) that provides fluid flow to 96 individual biofilms. This device allows fine control of continuous or intermittent fluid flow over a broad range of flow rates, and the use of a standard well plate format provides compatibility with plate readers. We show that use of green fluorescent protein (GFP)-expressing bacteria, staining with propidium iodide, and measurement of fluorescence with a plate reader permit rapid and accurate determination of biofilm viability. The biofilm viability measured with the plate reader agreed with that determined using plate counts, as well as with the results of fluorescence microscope image analysis. Using BioFlux and the plate reader, we were able to rapidly screen the effects of several antimicrobials on the viability of Pseudomonas aeruginosa PAO1 flow biofilms.Bacterial biofilms are surface-attached communities that are encased in a polymeric matrix, which exhibit a high degree of resistance to antimicrobial agents and the host immune system (12, 16). This makes them medically important; diseases with a biofilm component are chronic and difficult to eradicate. Examples of such diseases are cystitis (1), endocarditis (31), cystic fibrosis (35), and middle-ear (17) and indwelling medical device-associated (20) infections. Biofilms also play important environmental roles in, for example, wastewater treatment (38), bioremediation (29, 30), biofouling (7), and biocorrosion (2). Better control of biofilms requires elucidation of the molecular basis of their superior resistance (by identifying resistance-compromised mutants) and identification of compounds with antibiofilm activity. While our understanding of these aspects of biofilms has increased (11, 15, 25-27, 36), further work, including development of accurate high-throughput (HTP) methods for screening biofilm viability, is needed.Two major biofilm models are studied in the laboratory, biofilms grown without a continuous flow of fresh medium and biofilms grown with a continuous flow of fresh medium; examples of these two models are microtiter well biofilms and flow cell biofilms, respectively. Methods have been developed for HTP screening of the viability of static biofilms (6, 28, 32, 33), but there are no methods for HTP screening of flow biofilms. The latter biofilms are typically grown in flow cells, which have to be examined individually to determine viability and thus cannot be used for rapid screening. An HTP screening method for flow biofilms is desirable, as these biofilms more closely approximate natural biofilms and can differ from static biofilms evidently due to hydrodynamic influences on cell signaling (22, 34). For example, the ability of rpoS-deficient Escherichia coli (lacking σS) to form flow biofilms is impaired, but its capacity to form biofilms under static conditions is enhanced (18).We describe here a new application of a recently developed device (8-10, 13), the “BioFlux” device consisting of microfluidic channels for biofilm growth. Other microfluidic devices have recently been used for biofilm formation (14, 19, 21, 23), but none of them has been used for HTP screening. The BioFlux device permits rapid measurement of the fluorescence of flow biofilms with a plate reader, which permits initial HTP screening of the viability of such biofilms.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号