首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Structure and Activity of the Metal-independent Fructose-1,6-bisphosphatase YK23 from Saccharomyces cerevisiae
Authors:Ekaterina Kuznetsova  Linda Xu  Alexander Singer  Greg Brown  Aiping Dong  Robert Flick  Hong Cui  Marianne Cuff  Andrzej Joachimiak  Alexei Savchenko  Alexander F Yakunin
Abstract:Fructose-1,6-bisphosphatase (FBPase), a key enzyme of gluconeogenesis and photosynthetic CO2 fixation, catalyzes the hydrolysis of fructose 1,6-bisphosphate (FBP) to produce fructose 6-phosphate, an important precursor in various biosynthetic pathways. All known FBPases are metal-dependent enzymes, which are classified into five different classes based on their amino acid sequences. Eukaryotes are known to contain only the type-I FBPases, whereas all five types exist in various combinations in prokaryotes. Here we demonstrate that the uncharacterized protein YK23 from Saccharomyces cerevisiae efficiently hydrolyzes FBP in a metal-independent reaction. YK23 is a member of the histidine phosphatase (phosphoglyceromutase) superfamily with homologues found in all organisms. The crystal structure of the YK23 apo-form was solved at 1.75-Å resolution and revealed the core domain with the α/β/α-fold covered by two small cap domains. Two liganded structures of this protein show the presence of two phosphate molecules (an inhibitor) or FBP (a substrate) bound to the active site. FBP is bound in its linear, open conformation with the cleavable C1-phosphate positioned deep in the active site. Alanine replacement mutagenesis of YK23 identified six conserved residues absolutely required for activity and suggested that His13 and Glu99 are the primary catalytic residues. Thus, YK23 represents the first family of metal-independent FBPases and a second FBPase family in eukaryotes.
Keywords:Enzyme Catalysis  Enzyme Structure  Gluconeogenesis  Phosphatase  Yeast  Fructose-1  6-bisphosphatase  Fructose 1  6-bisphosphate
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号