首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Single-Stranded DNA Binding by F TraI Relaxase and Helicase Domains Is Coordinately Regulated
Authors:Lubomír Dostál  Joel F Schildbach
Institution:Department of Biology, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland
Abstract:Transfer of conjugative plasmids requires relaxases, proteins that cleave one plasmid strand sequence specifically. The F plasmid relaxase TraI (1,756 amino acids) is also a highly processive DNA helicase. The TraI relaxase activity is located within the N-terminal ∼300 amino acids, while helicase motifs are located in the region comprising positions 990 to 1450. For efficient F transfer, the two activities must be physically linked. The two TraI activities are likely used in different stages of transfer; how the protein regulates the transition between activities is unknown. We examined TraI helicase single-stranded DNA (ssDNA) recognition to complement previous explorations of relaxase ssDNA binding. Here, we show that TraI helicase-associated ssDNA binding is independent of and located N-terminal to all helicase motifs. The helicase-associated site binds ssDNA oligonucleotides with nM-range equilibrium dissociation constants and some sequence specificity. Significantly, we observe an apparent strong negative cooperativity in ssDNA binding between relaxase and helicase-associated sites. We examined three TraI variants having 31-amino-acid insertions in or near the helicase-associated ssDNA binding site. B. A. Traxler and colleagues (J. Bacteriol. 188:6346-6353) showed that under certain conditions, these variants are released from a form of negative regulation, allowing them to facilitate transfer more efficiently than wild-type TraI. We find that these variants display both moderately reduced affinity for ssDNA by their helicase-associated binding sites and a significant reduction in the apparent negative cooperativity of binding, relative to wild-type TraI. These results suggest that the apparent negative cooperativity of binding to the two ssDNA binding sites of TraI serves a major regulatory function in F transfer.Transfer of conjugative plasmids between bacteria contributes to genome diversification and acquisition of new traits. Conjugative plasmids encode most proteins required for transfer of one plasmid strand from the donor to the recipient cell (reviewed in references 11, 24, and 43). In preparation for transfer, a complex of proteins assembles at the plasmid origin of transfer (oriT). Within this complex, called the relaxosome, a plasmid-encoded relaxase or nickase binds and cleaves one plasmid strand at a specific oriT site (nic). As part of the cleavage reaction, the relaxase forms a covalent linkage between an active-site tyrosyl hydroxyl oxygen and a single-stranded DNA (ssDNA) phosphate, yielding a 3′ ssDNA hydroxyl (19, 30). Upon initiation of transfer, the plasmid strands are separated, and the cut strand is transported into the recipient. The relaxase is likely transferred into the recipient (12, 31) while still physically attached to plasmid DNA. The transferred relaxase may then join the ends of the ssDNA plasmid copy in the final step of plasmid transfer. Complementary strand synthesis in the donor and the recipient generates a double-stranded plasmid that is competent for further transfer. Successful conjugation requires effective temporal regulation, yet the mechanisms governing this regulation are poorly understood.The F plasmid oriT is ∼500 bp long and includes multiple binding sites for integration host factor (IHF), TraY, and TraM and a single site for TraI, the F relaxase (11). IHF, TraY, and TraM, participants in the relaxosome, bind double-stranded DNA to facilitate the action of TraI, perhaps by creating or stabilizing the ssDNA conformation around nic required for TraI recognition. The F TraI minimal high-affinity binding site includes ∼15 nucleotides around nic (39), and throughout the text, we refer to oligonucleotides that contain the TraI wild-type (wt) or variant binding site as oriT oligonucleotides. F TraI is 192 kDa (42), and in addition to its relaxase activity, TraI has a 5′-to-3′ helicase activity (4). These activities must be physically joined to allow efficient plasmid transfer (29), yet how the two activities are coordinated is a mystery. The relaxase region of F TraI has been defined as the N-terminal ∼300 amino acids (aa) (6, 40). Conserved helicase motifs, including those associated with an ATPase, lie between amino acids 990 and 1450. The C-terminal region (positions 1450 to 1756) plays an important role in bacterial conjugation, possibly involving protein-protein interactions with TraM (32) and/or inner membrane protein TraD (28).The 70-kDa central region of TraI that lies between the relaxase and helicase domains has been implicated in two functions. Haft and colleagues described TraI variants with 31-amino-acid insertions in this TraI region that facilitated plasmid transfer with greater efficiency than that afforded by the wild-type protein when these proteins are expressed at high levels (16). On the basis of this observation, the authors proposed that the region participated in a negative regulation of transfer. Matson and Ragonese demonstrated that this central region is required for TraI helicase function, likely due to participation in ssDNA recognition essential for the helicase activity (28). We wondered whether the proposed regulatory and ssDNA binding roles of the central region are linked and whether this region might help modulate TraI helicase and relaxase activities. Our objectives in this study were to confirm the role of the central region in ssDNA recognition, to assess the affinity and specificity of the ssDNA recognition by the central region, and to determine whether the relaxase and central domain ssDNA binding sites demonstrate cooperativity in binding. Our work yielded two significant and surprising results. First, the binding site within the TraI central region binds ssDNA with high affinity and significant sequence specificity, both unusual characteristics for a helicase. Second, the central region and relaxase ssDNA binding sites show an apparent strong negative cooperativity of binding, possibly explaining the role of the central region as a negative regulator and providing clues about how the timing of conjugative transfer might be regulated.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号