首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A cation counterflux supports lysosomal acidification
Authors:Benjamin E Steinberg  Kassidy K Huynh  Alexandre Brodovitch  Sabrina Jabs  Tobias Stauber  Thomas J Jentsch  Sergio Grinstein
Institution:1.Program in Cell Biology, Hospital for Sick Children, Toronto, Canada M5G 1X8;2.Institute of Medical Science, and 3.Department of Biochemistry, University of Toronto, Ontario, Canada M5S 1A8;4.Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), D-13125 Berlin, Germany
Abstract:The profound luminal acidification essential for the degradative function of lysosomes requires a counter-ion flux to dissipate an opposing voltage that would prohibit proton accumulation. It has generally been assumed that a parallel anion influx is the main or only counter-ion transport that enables acidification. Indeed, defective anion conductance has been suggested as the mechanism underlying attenuated lysosome acidification in cells deficient in CFTR or ClC-7. To assess the individual contribution of counter-ions to acidification, we devised means of reversibly and separately permeabilizing the plasma and lysosomal membranes to dialyze the cytosol and lysosome lumen in intact cells, while ratiometrically monitoring lysosomal pH. Replacement of cytosolic Cl with impermeant anions did not significantly alter proton pumping, while the presence of permeant cations in the lysosomal lumen supported acidification. Accordingly, the lysosomes were found to acidify to the same pH in both CFTR- and ClC-7–deficient cells. We conclude that cations, in addition to chloride, can support lysosomal acidification and defects in lysosomal anion conductance cannot explain the impaired microbicidal capacity of CF phagocytes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号