首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Variations in the Properties of Extractable “Humic Matter” and Associated Kerogen in Sediments through Geologic Time: Their Significance for Precambrian Biological Evolution and Paleoecology
Authors:Togwell A Jackson
Institution:Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, Ontario, Canada
Abstract:Chemical properties and δ13C values of benzene/methanol-extractable “humic matter” and associated kerogen in a large, diverse collection of Precambrian and Phanerozoic sediments from different parts of the world showed complex systematic variations through geologic time, reflecting major developments in the history of Precambrian life, and different kinds of sediment yielded similar patterns of variation. Moreover, certain data differentiate clearly between glacial and nonglacial detrital sediments, or between lacustrine and marine sediments, and some data suggest the occurrence of Precambrian land life. The abundance of aromatic groups and the proportion of aliphatic to aromatic groups in the extracts showed little variation from the early Archean (ca. 3.3 Ga) to the mid-Proterozoic (ca. 1.6-1.3 or 1.3-1.1 Ga), whereupon they increased sharply, peaked ca. 1.1-0.900 Ga, and then plunged to a minimum in the late Proterozoic (ca. 0.800 Ga) or early Phanerozoic. This is interpreted as indicating that cyanobacteria were the dominant photoautotrophs until the mid-Proterozoic, when algae evolved, proliferating until the late Proterozoic, whereupon their populations were depleted by herbivorous metazoans. Nitrogenous aromatic material increased to a maximum ca. 3.4–3.3 Ga and then decreased steadily to ca. 1.3 Ga, suggesting that early Precambrian cyanobacteria were enriched in photoprotective as well as photosynthetic tetrapyrrole pigments owing to the lack of ultraviolet radiation-shielding atmospheric O2 and O3. The concentration increased again starting ca. 1.3–0.800 Ga, reflecting the rise of algae, peaked ca. 0.680 Ga, and dropped catastrophically to a much lower value in the Cambrian (ca. 0.510 Ga), suggesting mass mortality at the Precambrian-Cambrian boundary.
Keywords:extractable humic matter  kerogen  Precambrian biological evolution  Precambrian paleoecology  sedimentary organic matter
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号