首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Molecular functions of the PP2A regulatory subunit Tap46 in plants
Authors:Chang Sook Ahn  Ho-Seok Lee  Hyun-Sook Pai
Institution:Department of Biology; Yonsei University; Seoul, Korea
Abstract:Tap42/α4 is a regulatory subunit of the protein phosphatase 2A (PP2A) family of phosphatases and plays a role in the target of rapamycin (TOR) pathway that regulates cell growth, ribosome biogenesis, translation and cell cycle progression in both yeast and mammals. We determined the cellular functions of Tap46, the plant homolog of Tap42/α4, in both Arabidopsis thaliana and Nicotiana benthamiana. Tap46 associated with the catalytic subunits of PP2A and the PP2A-like phosphatases PP4 and PP6 in vivo. Tap46 was phosphorylated by TOR in vitro, indicating that Tap46 is a direct substrate of TOR kinase. Tap46 deficiency caused cellular phenotypes that are similar to TOR-depletion phenotypes, including repression of global translation and activation of both autophagy and nitrogen recycling. Furthermore, Tap46 depletion regulated total PP2A activity in a time-dependent manner similar to TOR deficiency. These results suggest that Tap46 acts as a positive effector of the TOR signaling pathway in controlling diverse metabolic processes in plants. However, Tap46 silencing caused acute cell death, while TOR silencing only hastened senescence. Furthermore, mitotic cells with reduced Tap46 levels exhibited chromatin bridges at anaphase, while TOR depletion did not cause a similar defect. These findings suggest that Tap46 may have TOR-independent functions as well as functions related to TOR signaling in plants.Key words: acute cell death, autophagy, chromatin bridge, nitrogen mobilization, protein phosphatases, target of rapamycin (TOR)Yeast type 2A phosphatase-associated protein 42 kDa (Tap42) is a regulatory subunit that directly associates with catalytic subunits of the protein phosphatase 2A (PP2A) family of protein phosphatases to make a heterodimer and regulates the activity and substrate specificity of the intact enzyme complex.1 Functions of Tap42 as a component of the target of rapamycin (TOR) signaling pathway have been well characterized in yeast.13 Tap42-regulated phosphatase activities play a major role in signal transduction mediated by TOR. Accumulating evidence suggest that TOR regulates phosphorylation of target proteins by restraining PP2A activity through Tap42 phosphorylation.13 Rapamycin inhibits TOR activity and also influences Tap42-mediated phosphatase regulation in yeast.35α4, the mammalian homolog of Tap42, also associates with the catalytic subunits of PP2A, PP4 and PP6 to make a heterodimer.6 Rapamycin inhibits mammalian TOR (mTOR) activity, but it is not clear whether rapamycin prevents the formation of the α4/PP2Ac complex or whether α4 stimulates or represses PP2Ac activity.79 Interestingly, loss of Tap42 function in Drosophila does not affect TOR-regulated activities, including cell growth, metabolism and S6 kinase activity, but results in mitotic arrest caused by spindle anomalies and subsequent activation of c-Jun N-terminal kinase signaling and apoptosis.10 Similarly, α4 deletion in mice leads to the rapid onset of apoptosis in both proliferating and differentiated cells, while rapamycin itself does not severely affect adult cells.11 Furthermore, while TOR depletion causes developmental arrest and organ degeneration at the L3 stage in Caenorhabditis elegans, loss of α4 does not reproduce TOR deficiency phenotypes, but mainly leads to a fertility defect.12 Taken together, these results suggest that the yeast Tap42/TOR paradigm is not completely conserved in higher eukaryotes and that Tap42/α4 functions may not be exclusively dependent on the Tor signaling pathway.In this study, we investigated the in vivo functions and phosphatase regulation of Tap46, the plant Tap42/α4 homolog, in relation to TOR in Nicotiana benthamiana, Arabidopsis and tobacco BY2 cells. Tap46 was shown to interact with the catalytic subunits of PP2A, PP4 and PP6 in vivo. Recombinant Tap46 protein was phosphorylated by immunoprecipitated TOR kinase and its deletion forms in vitro. Dexamethasone-induced RNAi of Tap46 caused dramatic repression of global translation and activation of both autophagy and nitrogen mobilization in the early stages of gene silencing. These phenotypes mimic those of TOR inactivation or TOR deficiency in Arabidopsis, yeast and mammals, indicating that Tap46 is a critical mediator of the Tor pathway in the regulation of these metabolic processes in plants. However, these early phenotypes of Tap46-deficient plants were soon followed by an acute and rapid programmed cell-death (PCD), while TOR silencing only led to growth retardation and premature senescence in Arabidopsis and N. benthamiana, confirming results from a previous study.13 The PCD caused by Tap46 deficiency is consistent with the apoptosis induced by loss of Tap42/α4 function in both Drosophila and mice.10,11 Thus Tap42/α4/Tap46 appears to have a strong anti-apoptotic activity in higher eukaryotes. The underlying mechanisms of PCD activation caused by Tap46 depletion remain to be revealed, but it is possible that the inappropriate modulation of phosphatase activity and aberrant protein phosphorylation led to stress signaling and PCD activation.Another interesting phenotype of Tap46 deficiency is the formation of chromatin bridges in anaphase during mitosis, suggesting a role for Tap46 in plant cell mitotic progression. However, there have been no reports of anaphase bridge formation in tor mutants of any organisms. In Drosophila, loss of Tap42 function causes spindle disorganization and pre-anaphase arrest prior to the onset of apoptosis.10 In addition, Drosophila mutants with a defective regulatory subunit of PP2A exhibit an increased number of lagging chromosomes and chromatin bridges in anaphase.14,15 Tap46 likely regulates the functions of PP2A family phosphatases during mitosis by direct association with their catalytic subunits, thereby modulating both the activity and specificity of the enzyme. Accumulating evidence reveals dynamic functions of PP2A during mitosis in both yeast and mammals: PP2A regulates kinetochore function, sister chromatid cohesion, spindle bipolarity and progression to anaphase.1517 Counteracting the activity of protein kinases, PP4 has also been implicated in both centrosome maturation and function during mitosis.18 Based on immunolabeling results, Tap46 was visualized as distinct spots around chromatin and mitotic spindles during mitosis in tobacco BY2 cells (Lee HS and Pai HS, unpublished results). Further studies will address the interacting partners and dynamic relocation of Tap46 during the cell cycle.Our results in this study demonstrated that Tap46 plays an important regulatory role in plant growth and metabolism; a major part of its function appears related to TOR signaling. However, we consistently observed certain phenotypic differences between Tap46-silenced and TOR-silenced Arabidopsis and N. benthamiana plants: an acute and rapid PCD occurred upon Tap46 silencing but not upon TOR silencing, despite a similar degree of gene silencing. Furthermore, we did not observe anaphase bridge formation in mitotic root-tip cells of ethanol-induced TOR RNAi Arabidopsis plants, while chromatin bridges were repeatedly observed in Tap46-silenced tobacco BY2 and Arabidopsis root-tip cells. Although an ancient Tap42/TOR paradigm observed in yeast appears to be conserved in plants, new TOR-independent functions of Tap46 might have evolved, the abrogation of which can cause massive PCD activation and anaphase bridge formation. Tap46 is a major regulator of cellular PP2A activity in plant cells by interacting with multiple phosphatase partners. Unraveling the molecular networks of Tap46 activity and interactions is essential for understanding its TOR-dependent and -independent functions in plants.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号