首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Photolithographic fabrication of poly(ethylene glycol) microstructures for hydrogel-based microreactors and spatially addressed microarrays
Authors:Baek Taek Jin  Kim Nam Hyun  Choo Jaebum  Lee Eun Kyu  Seong Gi Hun
Institution:Department of Applied Chemistry, Hanyang University, Ansan 425-791, Korea.
Abstract:We describe the fabrication of poly(ethylene glycol) diacrylate (PEG-DA) hydrogel microstructures with a high aspect ratio and the use of hydrogel microstructures containing the enzyme beta-galactosidase (beta-Gal) or glucose oxidase (GOx)/horseradish peroxidase (HRP) as biosensing components for the simultaneous detection of multiple analytes. The diameters of the hydrogel microstructures were almost the same at the top and at the bottom, indicating that no differential curing occurred through the thickness of the hydrogel microstructure. Using the hydrogel microstructures as microreactors, beta-Gal or GOx/HRP was trapped in the hydrogel array, and the time-dependent fluorescence intensities of the hydrogel array were investigated to determine the dynamic uptake of substrates into the PEG-DA hydrogel. The time required to reach steady-state fluorescence by glucose diffusing into the hydrogel and its enzymatic reactions with GOx and HRP was half the time required for resorufin beta-D-galactopyranoside (RGB) when used as the substrate for beta-Gal. Spatially addressed hydrogel microarrays containing different enzymes were micropatterned for the simultaneous detection of multiple analytes, and glucose and RGB solutions were incubated as substrates. These results indicate that there was no cross-talk between the beta-Gal-immobilizing hydrogel micropatches and the GOx/HRP-immobilizing micropatches.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号