首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Suicide is not the inevitable outcome of “perpetual” selfing in tetrahymenines collected from natural habitats
Authors:Ellen M Simon  E Barbara Meyer
Abstract:A significant fraction of the Tetrahymena clones isolated from natural habitats self (mating occurs within a clone). Early attempts to study such clones failed because stable subclones were rarely, if ever, observed, and isolated pairs all died. Isozyme analysis revealed that these wild selfers were a diverse group; some were very similar to T. australis, a species with synclonal mating type determination and to T. elliotti, shown recently to have a karyonidal mating type system. One originally stable clone of T. australis included some selfing clones after a few years in our laboratory. Other clones manifested unique zymograms. Subclones isolated from 18 selfer strains were heterogeneous. All subclones of several selfers mated massively at each transfer through 100 fissions. Selfing among subclones of other selfers was highly variable or not observed. Although 77% of the pairs isolated died, and 9% of the pair cultures selfed, 15 selfers yielded some viable nonselfing “immature” progeny. Additional immature progeny were obtained by isolating pairs from macronuclear retention synclones. Although some “immature” progeny eventually selfed, most remained stable. Giemsa staining revealed macronuclear anlagen in nearly all mating pairs and some anomalies. Crosses among the F1 progeny clones of the T. elliotti selfers yield viability data comparable to those from crosses among normal strains. Perhaps perpetual selfing is a mechanism of getting rid of deleterious combinations of genes and uncovering better combinations in homozygous state by playing genetic roulette. © 1992 Wiley-Liss, Inc.
Keywords:Perpetual selfers  stable progeny from selfers  Tetrahymena australis  T  elliotti  T  shangaiensis  tetrahymenines
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号