首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cyanide, a coproduct of plant hormone ethylene biosynthesis, contributes to the resistance of rice to blast fungus
Authors:Seo Shigemi  Mitsuhara Ichiro  Feng Jiao  Iwai Takayoshi  Hasegawa Morifumi  Ohashi Yuko
Institution:Plant-Microbe Interactions Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan.
Abstract:Rice (Oryza sativa) plants carrying the Pi-i resistance gene to blast fungus Magnaporthe oryzae restrict invaded fungus in infected tissue via hypersensitive reaction or response (HR), which is accompanied by rapid ethylene production and formation of small HR lesions. Ethylene biosynthesis has been implicated to be important for blast resistance; however, the individual roles of ethylene and cyanide, which are produced from the precursor 1-aminocyclopropane-1-carboxylic acid, remain unevaluated. In this study, we found that Pi-i-mediated resistance was compromised in transgenic rice lines, in which ethylene biosynthetic enzyme genes were silenced and then ethylene production was inhibited. The compromised resistance in transgenic lines was recovered by exogenously applying cyanide but not ethephon, an ethylene-releasing chemical in plant tissue. In a susceptible rice cultivar, treatment with cyanide or 1-aminocyclopropane-1-carboxylic acid induced the resistance to blast fungus in a dose-dependent manner, while ethephon did not have the effect. Cyanide inhibited the growth of blast fungus in vitro and in planta, and application of flavonoids, secondary metabolites that exist ubiquitously in the plant kingdom, enhanced the cyanide-induced inhibition of fungal growth. These results suggested that cyanide, whose production is triggered by HR in infected tissue, contributes to the resistance in rice plants via restriction of fungal growth.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号