首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Identification and functional characterization of the Lactococcus lactis rfb operon, required for dTDP-rhamnose Biosynthesis
Authors:Boels Ingeborg C  Beerthuyzen Marke M  Kosters Marit H W  Van Kaauwen Martijn P W  Kleerebezem Michiel  De Vos Willem M
Institution:Wageningen Centre for Food Sciences, Wageningen, The Netherlands.
Abstract:dTDP-rhamnose is an important precursor of cell wall polysaccharides and rhamnose-containing exopolysaccharides (EPS) in Lactococcus lactis. We cloned the rfbACBD operon from L. lactis MG1363, which comprises four genes involved in dTDP-rhamnose biosynthesis. When expressed in Escherichia coli, the lactococcal rfbACBD genes could sustain heterologous production of the Shigella flexneri O antigen, providing evidence of their functionality. Overproduction of the RfbAC proteins in L. lactis resulted in doubled dTDP-rhamnose levels, indicating that the endogenous RfbAC activities control the intracellular dTDP-rhamnose biosynthesis rate. However, RfbAC overproduction did not affect rhamnose-containing B40-EPS production levels. A nisin-controlled conditional RfbBD mutant was unable to grow in media lacking the inducer nisin, indicating that the rfb genes have an essential role in L. lactis. Limitation of RfbBD activities resulted in the production of altered EPS. The monomeric sugar of the altered EPS consisted of glucose, galactose, and rhamnose at a molar ratio of 1:0.3:0.2, which is clearly different from the ratio in the native sugar. Biophysical analysis revealed a fourfold-greater molecular mass and a twofold-smaller radius of gyration for the altered EPS, indicating that these EPS are more flexible polymers with changed viscosifying properties. This is the first indication that enzyme activity at the level of central carbohydrate metabolism affects EPS composition.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号