首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Differential growth and biochemical composition of photoautotrophic and heterotrophic <Emphasis Type="Italic">Isochrysis maritima</Emphasis>: evaluation for use as aquaculture feed
Authors:E Mohammad Basri  W O Wan Maznah
Institution:1.School of Biological Sciences,Universiti Sains Malaysia,Penang,Malaysia;2.Centre for Marine and Coastal Studies (CEMACS),Universiti Sains Malaysia,Penang,Malaysia
Abstract:The growth and biochemical composition of photoautotrophic and heterotrophic Isochrysis maritima in 50 L of Walne’s medium were compared. Heterotrophic I. maritima fed with 0.02 M glucose had a 4.6-fold higher maximum cell density (38.17 ± 0.23 × 106 cells mL?1) than photoautotrophic cells (8.29 ± 0.70 × 106 cells mL?1). The carbohydrate content was slightly higher in heterotrophic cells at all growth stages (mid-exponential, 40.8%; early stationary, 48.3%; and late stationary, 47.6%), but there was no significant effect on the protein content under either trophic condition. The total saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) were higher under heterotrophic conditions than those under photoautotrophic conditions. However, because omega-3 PUFAs are the most essential element in feed nutrition, low results for eicosapentaenoic acid (EPA) (0.28 ± 0.06%) and docosahexaenoic acid (DHA) (3.22 ± 0.26%) in the heterotrophic cells compared to the photoautotrophic cells (EPA: 0.44 ± 0.11%; DHA: 8.58 ± 0.73%) plus a low omega-3/6 PUFAs ratio (heterotrophic: 0.16–0.47; photoautotrophic: 2.60–2.88) and high value of (SFA + MUFA)/PUFA (heterotrophic: 5.50–6.81; photoautotrophic: 2.64–3.60) showed that this species is not suitable for aquaculture feed when cultivated under heterotrophic conditions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号