首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Catalytic mechanism of dichloromethane dehalogenase from Methylophilus sp. strain DM11
Authors:Stourman Nina V  Rose James H  Vuilleumier Stephane  Armstrong Richard N
Institution:Department of Biochemistry, Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA.
Abstract:The glutathione (GSH)-dependent dichloromethane dehalogenase from Methylophilus sp. strain DM11 catalyzes the dechlorination of CH(2)Cl(2) to formaldehyde via a highly reactive, genotoxic intermediate, S-(chloromethyl)glutathione (GS-CH(2)Cl). The catalytic mechanism of the enzyme toward a series of dihalomethane and monohaloethane substrates suggests that the initial addition of GSH to the alkylhalides is fast and that the rate-limiting step in turnover is the release of either the peptide product or formaldehyde. With the exception of CH(2)ClF, which forms a relatively stable GS-CH(2)F intermediate, the turnover numbers for a series of dihalomethanes fall in a very narrow range (1-3 s(-1)). The pre-steady-state kinetics of the DM11-catalyzed addition of GSH to CH(3)CH(2)Br exhibits a burst of S-(ethyl)-glutathione (k(b) = 96 +/- 56 s(-1)) followed by a steady state with k(cat) = 0.13 +/- 0.01 s(-1). The turnover numbers for CH(3)CH(2)Cl, CH(3)CH(2)Br, and CH(3)CH(2)I are identical, indicating a common rate-limiting step. The turnover numbers of the enzyme with CH(3)CH(2)Br and CH(3)CH(2)I are dependent on viscosity and are very close to the measured off-rate of GSEt. The turnover number with CH(2)I(2) is also dependent on viscosity, suggesting that a diffusive step is rate-limiting with dihaloalkanes as well. The rate constants for solvolysis of CH(3)SCH(2)Cl, a model for GS-CH(2)Cl, range between 1 s(-1) (1:1 dioxane/water) and 64 s(-1) (1:10 dioxane/water). Solvolysis of the S-(halomethyl)glutathione intermediates may also occur in the active site of the enzyme preventing the release of the genotoxic species. Together, the results indicate that dissociation of the GS-CH(2)X or GS-CH(2)OH intermediates from the enzyme may be a relatively rare event.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号