首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Reduction of Akt2 expression inhibits chemotaxis signal transduction in human breast cancer cells
Authors:Wang Jingna  Wan Wuzhou  Sun Ronghua  Liu Ying  Sun Xiangjun  Ma Dalong  Zhang Ning
Institution:

aBeijing National Laboratory for Molecular Sciences (BNLMS), Department of Chemical Biology, and State Key Laboratory of Molecular Dynamic and Stable Structures, College of Chemistry, Peking University, Beijing, 100871, China

bTianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China

cDepartment of Biological Sciences, Oakland University, Rochester, Michigan 48309, USA

dLaboratory of Medical Immunology, School of Basic Medical Science, Peking University, Beijing, China

eCollege of Agriculture and Biotechnology, Shanghai Jiao Tong University, China

Abstract:Protein kinase Cζ PKCζ mediates cancer cell chemotaxis by regulating cytoskeleton rearrangement and cell adhesion. In the research for its upstream regulator, we investigated the role of Akt2 in chemotaxis and metastasis of human breast cancer cells. Reduction of Akt2 expression by siRNA inhibited chemotaxis of MDA-MB-231, T47D, and MCF7 cells, three representative human breast cancer cells. Expression of a wild type Akt2 in siRNA transfected cells rescued the phenotype. EGF-induced integrin β1 phosphorylation was dampened, consistent with defects in adhesion. Phosphorylation of LIMK and cofilin, a critical step of cofilin recycle and actin polymerization, was also impaired. Thus, Akt2 regulates both cell adhesion and cytoskeleton rearrangement during chemotaxis. Depletion of Akt2 by siRNA impaired the activation of PKCζ while inhibition of PKCζ did not interfere with EGF induced phosphorylation of Akt. Furthermore, EGF induced co-immunoprecipitation between PKCζ and Akt2, but not Akt1, suggesting that a direct interaction between PKCζ and Akt2 in chemotaxis. Protein levels of integrin β1, LIMK, cofilin, and PKCζ didn't alter, suggesting that Akt2 does not regulate the expression of these signaling molecules. In a Severe Combine Immunodeficiency mouse model, Akt2 depleted MDA-MB-231 cells showed a marked reduction in metastasis to mouse lungs, demonstrating the biological relevancy of Akt2 in cancer metastasis in vivo. Taken together, our results suggest that Akt2 directly mediates EGF-induced chemotactic signaling pathways through PKCζ and its expression is critical during the extravasation of circulating cancer cells.
Keywords:Akt2  Chemotaxis  Metastasis  PKCζ  EGF
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号