首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Highly reactive cysteine residues are part of the substrate binding site of mammalian dipeptidyl peptidases III
Authors:Abramić Marija  Simaga Sumski  Osmak Maja  Cicin-Sain Lipa  Vukelić Bojana  Vlahovicek Kristian  Dolovcak Ljerka
Institution:Department of Organic Chemistry and Biochemistry, Ruder Boskovi? Institute, Bijenicka 54 pp 180, 10002 Zagreb, Croatia. abramic@rudjer.irb.hr
Abstract:Dipeptidyl peptidase III (DPP III) is a cytosolic zinc-exopeptidase involved in the intracellular protein catabolism of eukaryotes. Although inhibition by thiol reagents is a general feature of DPP III originating from various species, the function of activity important sulfhydryl groups is still inadequately understood. The present study of the reactivity of these groups was undertaken in order to clarify their biological significance.The inactivation kinetics of human and rat DPP III by sulfhydryl reagent p-hydroxy-mercuribenzoate (pHMB) was monitored by determination of the enzyme's residual activity with fluorimetric detection.Inactivation of this human enzyme exhibited pseudo-first-order kinetics, suggesting that all reactive SH-groups have equivalent reactivity, and the second-order rate constant was calculated to be 3523+/-567M(-1)min(-1). Rat DPP III was hyperreactive to pHMB and showed biphasic kinetics indicating two classes of reactive SH-groups. The second-order rate constants of 3540M(-1)s(-1) for slower reacting sulfhydryl, and 21,855M(-1)s(-1) for faster reacting sulfhydryl were obtained from slopes of linear plots of pseudo-first-order constants versus reagent concentration. Peptide substrates protected both mammalian DPPs III from inactivation by pHMB. Physiological concentrations of biological thiols and H(2)O(2) inactivated the rat DPP III. Human enzyme was resistant to H(2)O(2) attack and less affected by reduced glutathione (GSH) than the rat homologue. A significantly lower DPP III level, determined by activity measurement and Western blotting, was found in the cytosols of highly oxygenated rat tissues.These results provide kinetic evidence that cysteine residues are involved in substrate binding of mammalian DPPs III.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号