Regulation of MAPK signaling and cell death by MAPK phosphatase MKP2 |
| |
Authors: | Belmiro Vilela Montserrat Pagès Victoria Lumbreras |
| |
Affiliation: | Molecular Genetics Department; CRAG/CSIC-IRTA-UAB; Barcelona, Spain |
| |
Abstract: | Mitogen-activated protein kinase (MAPK) pathways play crucial roles in developmental and adaptive responses. Depending on the stimulus, MAPK activation regulates a wide variety of plant cell responses, such as proliferation, differentiation and cell death, which normally require precise spatial and temporal control. In this context, protein phosphatases play important roles by regulating the duration and magnitude of MAPK activities. During infection by non-host and incompatible host microorganisms, MAPK activity can promote a local cell death mechanism called hypersensitive response (HR), which is part of the plant defence response. HR-like responses require sustained MAPK activity and correlate with oxidative burst. We recently showed that MAPK phosphatase MKP2 positively controls biotic and abiotic stress responses in Arabidopsis. MKP2 interacts with MPK6 in HR-like responses triggered by fungal elicitors, suggesting that MKP2 protein is part of the mechanism involved in MAPK regulation during HR. Here we discuss the interplay of MAPK and MKP2 phosphatase signaling during cell death responses elicited by host-pathogen interactions.Key words: Arabidopsis, hypersensitive response (HR), MAPK, MPK6, MKP2, ROSDifferent studies have identified conserved components of MAPK pathways in plants and have provided evidence that MAPK signaling regulates a wide variety of plant biological responses.1 For example, MAPK signaling is required for the regulation of stomatal functions,2–4 hormone signaling5,6 and innate immunity responses.7–9 An increasing number of reports indicate that plant MAPKs, in particular tobacco SIPK/Ntf4 and WIPK and their Arabidopsis orthologs, MPK6 and MPK3, are converging points for signals elicited by different pathogens and play regulatory roles in disease responses.10One of the most efficient and immediate immune responses dependent on MAPK signaling is a mechanism of cell death called hypersensitive response (HR). HR is a rapid, localized cell death process at the site of pathogen infection, which is associated with specific molecular effects such as the generation of reactive oxygen species (ROS) and protein phosphorylation.11 The best evidence implicating MAPK activity in HR comes from gain-of-function studies overexpressing SIPK/Ntf4 and WIPK in tobacco leaves. In these experiments, activation of SIPK/Ntf4 kinases efficiently induces HR-like cell death,12,13 but the absence of endogenous WIPK function causes delayed induction of this HR phenotype, suggesting that WIPK activity facilitates or potentiates the SIPK signal.14 Similarly, overexpression analyses of Arabidopsis MPK3 and MPK6 proteins, either alone or co-expressed with activated upstream regulators (MKK proteins), also triggers a cell death phenotype,15 suggesting a coordinated role of MKK/MAPK signaling modules in HR.15 Thus, the involvement of MAPK activities such as SIPK/MPK6 in HR cell death responses is supported by different studies; however their regulation by phosphatases remains less understood.The main regulators of MAPKs are specific phosphatases belonging to various families, including PP2C Ser/Thr phosphatases, Tyr phosphatases (PTPs) or dual specificity phosphatases (DSPs) such as the MAPK phosphatase (MKP) subgroup.16,17 In general, dephosphorylation of MAPKs inactivates their function in many metabolic, developmental or adaptive responses. In the context of HR, we have recently shown that Arabidopsis MKP phosphatase MKP2 interacts with MPK6 in the response triggered by fungal elicitors. In particular, co-expression of MPK6 and MKP2 proteins in infected tobacco leaves significantly attenuates the cell death phenotype produced by expressing MPK6 alone, suggesting that MKP2 negatively regulates MAPK activities in this process.18 |
| |
Keywords: | |
|
|