Department of Anatomy and Neurobiology, Boston University School of Medicine;Department of Neurology, Beth Israel Deaconess Med Center;Centre de Recherche de l''institut du Cerveau et la Moelle Epinière (CRICM), Centre National de la Recherche Scientifique (CNRS)
Abstract:
Stimulation of the human visual cortex produces a transient perception of light, known as a phosphene. Phosphenes are induced by invasive electrical stimulation of the occipital cortex, but also by non-invasive Transcranial Magnetic Stimulation (TMS)1 of the same cortical regions. The intensity at which a phosphene is induced (phosphene threshold) is a well established measure of visual cortical excitability and is used to study cortico-cortical interactions, functional organization 2, susceptibility to pathology 3,4 and visual processing 5-7. Phosphenes are typically defined by three characteristics: they are observed in the visual hemifield contralateral to stimulation; they are induced when the subject s eyes are open or closed, and their spatial location changes with the direction of gaze 2. Various methods have been used to document phosphenes, but a standardized methodology is lacking. We demonstrate a reliable procedure to obtain phosphene threshold values and introduce a novel system for the documentation and analysis of phosphenes. We developed the Laser Tracking and Painting system (LTaP), a low cost, easily built and operated system that records the location and size of perceived phosphenes in real-time. The LTaP system provides a stable and customizable environment for quantification and analysis of phosphenes.Download video file.(84M, mp4)