首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Phosphorothioate analogues of (2'-5')(A)4: agonist and antagonist activities in intact cells
Authors:G Charachon  R W Sobol  C Bisbal  T Salehzada  M Silhol  R Charubala  W Pfleiderer  B Lebleu  R J Suhadolnik
Institution:Laboratoire de Biochimie des Proteines, UA CNRS 1191, Universitè de Montpellier II, France.
Abstract:Metabolically stable phosphorothioate tetramer analogues of (2'-5')(A)n with Rp and/or Sp chirality in the 2'-5'-phosphodiester linkages constitute a new class of antiviral agents since they mimic the effects of interferons. Three of the diastereomeric 5'-monophosphates (i.e., pRpRpRp, pSpRpRp, and pRpSpSp) bind to and activate RNase L from extracts of HeLa cells. However, the pSpSpSp (2'-5')-(A)4-phosphorothioate is unique in that it binds to, but cannot activate, RNase L to cleave rRNA. When microinjected into the cytoplasm of HeLa cells followed by virus infection, the pRpRpRp, pSpRpRp, and pRpSpSp (2'-5')(A)4-phosphorothioates demonstrate antiviral activity, as does (2'-5')(A)4ox-red, an active (2'-5')(A)n analogue. When microinjected simultaneously with (2'-5')(A)nox-red, an active the pSpSpSp (2'-5')(A)4-phosphorothioate inhibits activation of RNase L in HeLa cells, thereby blocking direct protection of vesicular stomatitis virus. The agonist and antagonist properties of pRpRpRp and pSpSpSp, respectively, are transient probably as a consequence of the hydrolysis of the 5'-monophosphate and formation of the less active (2'-5')(A)4-phosphorothioate cores. The possible use of these (2'-5')(A)4-phosphorothioates as tools for dissecting the biological significance of the (2'-5')(A)n system or in antiviral chemotherapy is discussed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号