首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Neurogenic-nitric oxide interactions affecting brachial artery mechanics in humans: roles of vessel distensibility vs. diameter
Authors:Salzer Deborah A  Medeiros Philip J  Craen Rosemary  Shoemaker J Kevin
Institution:Neurovascular Research Laboratory, School of Kinesiology, Rm. 3110 Thames Hall, The Univ. of Western Ontario, London, ON, Canada N6A 3K7.
Abstract:The purpose of this investigation was to assess the interactive influence of sympathetic activation and supplemental nitric oxide (NO) on brachial artery distensibility vs. its diameter. It was hypothesized that 1) sympathetic activation and NO competitively impact muscular conduit artery (brachial artery) mechanics, and 2) neurogenic constrictor input affects conduit vessel stiffness independently of outright changes in conduit vessel diastolic diameter. Lower body negative pressure (LBNP) and a cold pressor stress (CPT) were used to study the changes in conduit vessel mechanics when the increased sympathetic outflow occurred with and without changes in heart rate (LBNP -40 vs. -15 mmHg) and blood pressure (CPT vs. LBNP). These maneuvers were performed in the absence and presence of nitroglycerin. Neither LBNP nor CPT altered brachial artery diastolic diameter; however, distensibility was reduced by 25 to 54% in each reflex (all P < 0.05). This impact of sympathetic activation on brachial artery distensibility was not altered by nitroglycerin supplementation (21-54%; P < 0.05), although baseline diameter was increased by the exogenous NO (P < 0.05). The results indicate that sympathetic excitation can reduce the distensibility of the brachial artery independently of concurrent changes in diastolic diameter, heart rate, and blood pressure. However, exogenous NO did not minimize or reverse brachial stiffening during sympathetic activation. Therefore, sympathetic outflow appears to impact the stiffness of this conduit vessel rather than its diastolic diameter or, by inference, its local resistance to flow.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号