首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A computational/experimental platform for investigating three-dimensional puzzle solving of comminuted articular fractures
Authors:Thomas Thaddeus P  Anderson Donald D  Willis Andrew R  Liu Pengcheng  Frank Matthew C  Marsh J Lawrence  Brown Thomas D
Institution:Department of Orthopaedics and Rehabilitation, The University of Iowa, Iowa City, USA. thaddeus-thomas@uiowa.edu
Abstract:Reconstructing highly comminuted articular fractures poses a difficult surgical challenge, akin to solving a complicated three-dimensional (3D) puzzle. Preoperative planning using computed tomography (CT) is critically important, given the desirability of less invasive surgical approaches. The goal of this work is to advance 3D puzzle-solving methods towards use as a preoperative tool for reconstructing these complex fractures. A methodology for generating typical fragmentation/dispersal patterns was developed. Five identical replicas of human distal tibia anatomy were machined from blocks of high-density polyetherurethane foam (bone fragmentation surrogate), and were fractured using an instrumented drop tower. Pre- and post-fracture geometries were obtained using laser scans and CT. A semi-automatic virtual reconstruction computer program aligned fragment native (non-fracture) surfaces to a pre-fracture template. The tibiae were precisely reconstructed with alignment accuracies ranging from 0.03 to 0.4 mm. This novel technology has the potential to significantly enhance surgical techniques for reconstructing comminuted intra-articular fractures, as illustrated for a representative clinical case.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号