首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mesencephalic Dopamine Neurons Become Less Sensitive to 1 -Methyl-4-Phenyl-l,2,3,6-Tetrahydropyridine Toxicity During Development In Vitro
Authors:Peter Danias  William J Nicklas  Senyo Ofori  Julia Shen  Catherine Mytilineou
Institution:Department of Neurology, Mount Sinai School of Medicine, New York, New York 10029.
Abstract:The in vitro development of monoamine oxidase (MAO) activity and 3H]dopamine (DA) uptake capacity of dissociated cell cultures from rat embryo mesencephalon were correlated with the potency of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridine (MPP+) neurotoxicity. Specific activities of both MAO-A and MAO-B increased during in vitro development of the cultures, with MAO-B activity increasing 20-fold between the first and fourth week. Similarly, 3H]DA accumulation increased 2.6-fold between the first and third week in vitro, when it reached a plateau. Unexpectedly, the toxicities of MPTP and MPP+ were substantially decreased in the older cultures. Exposure to MPTP reduced 3H]DA accumulation per culture by 77% in 1-week-old cultures and by 36% in 4-week-old cultures. Similarly, damage caused by MPPT was reduced from 84% of control in the first week to 34% of control in the fourth week. The attenuation of neurotoxicity was not due to an increase in storage of MPP+ in the synaptic vesicles of DA neurons, nor to a change in the distribution of MPP+ between dopaminergic and other cellular components of the cultures. The damage to DA neurons caused by the mitochondrial toxin, rotenone, also showed a similar reduction in the older cultures. These observations coupled with an increase in lactate formation and glucose consumption during the in vitro development of the cultures suggest a shift toward increased glycolysis and decreased dependence on aerobic metabolism. This would render the cells more resistant to the inhibition of mitochondrial function by MPP+.
Keywords:Protein acylation  Neuronal cultures  Growth-associated proteins  87-Kilodalton synaptosomal phosphoprotein
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号