首页 | 本学科首页   官方微博 | 高级检索  
     


Basal and angiotensin II-inhibited neuronal delayed-rectifier K+ current are regulated by thioredoxin
Authors:Matsuura Tomokazu  Harrison Rachael A  Westwell Andrew D  Nakamura Hajime  Martynyuk Anatoly E  Sumners Colin
Affiliation:Dept. of Physiology and Functional Genomics, College of Medicine, University of Florida, Box 100274, 1600 SW Archer Rd., Gainesville, FL 32610-0274, USA.
Abstract:In previous studies, we determined that macrophage migration inhibitory factor (MIF), acting intracellularly via its intrinsic thiol-protein oxidoreductase (TPOR) activity, stimulates basal neuronal delayed-rectifier K+ current (IKv) and inhibits basal and angiotensin (ANG) II-induced increases in neuronal activity. These findings are the basis for our hypothesis that MIF is a negative regulator of ANG II actions in neurons. MIF has recently been recategorized as a member of the thioredoxin (Trx) superfamily of small proteins. In the present study we have examined whether Trx influences basal and ANG II-modulated IKv in an effort to determine whether the Trx superfamily can exert a general regulatory influence over neuronal activity and the actions of ANG II. Intracellular application of Trx (0.8–80 nM) into rat hypothalamic/brain stem neurons in culture increased neuronal IKv, as measured by voltage-clamp recordings. This effect of Trx was abolished in the presence of the TPOR inhibitor PMX 464 (800 nM). Furthermore, the mutant protein recombinant human C32S/C35S-Trx, which lacks TPOR activity, failed to alter neuronal IKv. Trx applied at a concentration (0.08 nM) that does not alter basal IKv abolished the inhibition of neuronal IKv produced by ANG II (100 nM). Given our observation that ANG II increases Trx levels in neuronal cultures, it is possible that Trx (like MIF) has a negative regulatory role over basal and ANG II-stimulated neuronal activity via modulation of IKv. Moreover, these data suggest that TPOR may be a general mechanism for negatively regulating neuronal activity. thiol-protein oxidoreductase; patch clamp; neuronal activity
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《American journal of physiology. Cell physiology》浏览原始摘要信息
点击此处可从《American journal of physiology. Cell physiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号