首页 | 本学科首页   官方微博 | 高级检索  
     


Effective delivery of Pep-1-cargo protein into ischemic neurons and long-term neuroprotection of Pep-1-SOD1 against ischemic injury in the gerbil hippocampus
Authors:Cho Jun Hwi  Hwang In Koo  Yoo Ki-Yeon  Kim So Young  Kim Dae Won  Kwon Young-Guen  Choi Soo Young  Won Moo-Ho
Affiliation:Department of Emergency Medicine, College of Medicine, Kangwon National University, Chuncheon 200-701, South Korea.
Abstract:We examined the intracellular delivery of Pep-1-cargo protein against transient ischemic damage in the hippocampal CA1 region in gerbils. For this study, we introduced green fluorescent protein (GFP) and constructed Pep-1-GFP protein. At 12h after Pep-1-GFP treatment, GFP fluorescence was shown in almost CA1 pyramidal neurons in ischemic animals; in the sham-operated group, GFP fluorescence was shown in a few pyramidal neurons. Next, we confirmed the long-term effects of Pep-1-Cu,Zn-superoxide dismutase 1 (SOD1) against ischemic damage. In behavioral test, locomotor activity was significantly increased in Pep-1- and Pep-1-SOD1-treated groups 1 day after ischemia/reperfusion; the locomotor activity in the Pep-1-treated group was higher than that of the Pep-1-SOD1-treated group. Thereafter, the locomotor activity in both groups was decreased with time. Four days after ischemia/reperfusion, the locomotor activity in the Pep-1-SOD1-treated group was similar to that of the sham group; in the Pep-1-treated group, the activity was lower than that of the sham group. In the histochemical study, the cresyl violet positive neurons in the Pep-1-SOD1-treated group were abundantly detected in the hippocampal CA1 region 5 days after ischemia/reperfusion. In biochemical study, SOD1 protein level and activity in all Pep-1-treated ischemic groups were significantly lower than that of the Pep-1-SOD1-treated group. Our results indicate that Pep-1-cargo fusion proteins can be efficiently delivered into neurons in the ischemic hippocampus, and that Pep-1-SOD1 treatment in ischemic animals show a neuroprotection in the ischemic hippocampus for a long time.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号