首页 | 本学科首页   官方微博 | 高级检索  
     


Evolutionary Emergence of a Novel Splice Variant with an Opposite Effect on the Cell Cycle
Authors:Muhammad Sohail  Jiuyong Xie
Affiliation:aDepartment of Physiology & Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada;bDepartment of Biochemistry & Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
Abstract:Alternative splicing contributes greatly to the diversification of mammalian proteomes, but the molecular basis for the evolutionary emergence of splice variants remains poorly understood. We have recently found a novel class of splicing regulatory elements between the polypyrimidine tract (Py) and 3′ AG (REPA) at intron ends in many human genes, including the multifunctional PRMT5 (for protein arginine methyltransferase 5) gene. The PRMT5 element is comprised of two G tracts that arise in most mammals and accompany significant exon skipping in human transcripts. The G tracts inhibit splicing by recruiting heterogeneous nuclear ribonucleoprotein (hnRNP) H and F (H/F) to reduce U2AF65 binding to the Py, causing exon skipping. The resulting novel shorter variant PRMT5S exhibits a histone H4R3 methylation effect similar to that seen with the original longer PRMT5L isoform but exhibits a distinct localization and preferential control of critical genes for cell cycle arrest at interphase in comparison to PRMT5L. This report thus provides a molecular mechanism for the evolutionary emergence of a novel splice variant with an opposite function in a fundamental cell process. The presence of REPA elements in a large group of genes implies their wider impact on different cellular processes for increased protein diversity in humans.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号