首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Metal ion-mediated reduction in surface entropy improves diffraction quality of crystals of the IRAK-4 death domain.
Authors:Michael V Lasker  Santosh M Kuruvilla  Mark M Gajjar  Anubhav Kapoor  Satish K Nair
Institution:Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA. lasker@uiuc.edu
Abstract:Interleukin-1 receptor-associated kinase-4 (IRAK-4) is an essential component of innate immunity in mice and humans. IRAK-4 is a bipartite protein composed of a death domain (DD) that mediates molecular recognition, and a catalytic kinase domain. Structure determination of the proteolytically stable, soluble IRAK-4 DD was hampered by poor diffraction quality. Addition of manganese (II) chloride to the crystallization solution produced significant improvements in diffraction, and the structure has been determined to 1.7-Angstrom resolution. Examination of the IRAK-4 DD crystal structure reveals a single manganese ion coordinated to surface residues lysine-21 and aspartate-24. Coordination of the manganese ion resulted in a reduction in the surface entropy at this region of the molecule, by generating a contact-forming and conformationally homogenous surface patch. Prior studies have shown that surface entropy reduction by mutation of surface residues with large flexible side chains (i.e., Lys and Glu) to smaller side chains results in the production of diffraction-quality crystals. The intrinsic high surface entropy of Lys residues can also be decreased by reductive methylation. Our results suggest that screening of manganese ions as a crystallization additive may also facilitate ordered crystallization by reduction of surface entropy. Given the quick and inexpensive nature of screening, this technique is likely to be amenable to high-throughput methods such as those employed by Protein Structure Initiatives.
Keywords:X-ray crystallography  death domain  innate immunity  surface entropy  diffraction
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号