首页 | 本学科首页   官方微博 | 高级检索  
     


Arabidopsis PUB22 and PUB23 are homologous U-Box E3 ubiquitin ligases that play combinatory roles in response to drought stress
Authors:Cho Seok Keun  Ryu Moon Young  Song Charlotte  Kwak June M  Kim Woo Taek
Affiliation:Department of Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea.
Abstract:Ubiquitination is involved in diverse cellular processes in higher plants. In this report, we describe Arabidopsis thaliana PUB22 and PUB23, two homologous U-box-containing E3 ubiquitin (Ub) ligases. The PUB22 and PUB23 genes were rapidly and coordinately induced by abiotic stresses but not by abscisic acid. PUB22- and PUB23-overexpressing transgenic plants were hypersensitive to drought stress. By contrast, loss-of-function pub22 and pub23 mutant plants were significantly more drought-tolerant, and a pub22 pub23 double mutant displayed even greater drought tolerance. These results indicate that PUB22 and PUB23 function as negative regulators in the water stress response. Yeast two-hybrid, in vitro pull-down, and in vivo coimmunoprecipitation experiments revealed that PUB22 and PUB23 physically interacted with RPN12a, a subunit of the 19S regulatory particle (RP) in the 26S proteasome. Bacterially expressed RPN12a was effectively ubiquitinated in a PUB-dependent fashion. RPN12a was highly ubiquitinated in 35S:PUB22 plants, but not in pub22 pub23 double mutant plants, consistent with RPN12a being a substrate of PUB22 and PUB23 in vivo. In water-stressed wild-type and PUB-overexpressing plants, a significant amount of RPN12a was dissociated from the 19S RP and appeared to be associated with small-molecular-mass protein complexes in cytosolic fractions, where PUB22 and PUB23 are localized. Overall, our results suggest that PUB22 and PUB23 coordinately control a drought signaling pathway by ubiquitinating cytosolic RPN12a in Arabidopsis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号