首页 | 本学科首页   官方微博 | 高级检索  
     


Stimulation of deoxyribonucleic acid excision repair in human fibroblasts pretreated with sodium butyrate
Authors:S L Dresler
Abstract:The effect of pretreatment with sodium butyrate on DNA excision repair was studied in intact and permeable confluent (i.e., growth-inhibited) diploid human fibroblasts. Exposure to 20 mM sodium butyrate for 48 h increased subsequent ultraviolet (UV)-induced [methyl-3H]thymidine incorporation by intact AG1518 fibroblasts by 1.8-fold and by intact IMR-90 fibroblasts by 1.2-1.3-fold. UV-induced incorporation of deoxy[5-3H]cytidine, deoxy[6-3H]cytidine, and deoxy[6-3H]uridine, however, showed lesser degrees of either stimulation or inhibition in butyrate-pretreated cells. This result suggested that measurements of butyrate's effect on DNA repair synthesis in intact cells are confounded by simultaneous changes in nucleotide metabolism. The effect of butyrate on excision repair was also studied in permeable human fibroblasts in which excision repair is dependent on exogenous nucleotides. Butyrate pretreatment stimulated UV-induced repair synthesis by 1.3-1.7-fold in permeable AG1518 cells and by 1.5-2-fold in permeable IMR-90 cells. This stimulation of repair synthesis was not due to changes in repair patch size or composition or in the efficiency of DNA damage production but rather resulted from a butyrate-induced increase in the rate of damage-specific incision of DNA. The increased rate of incision in butyrate-pretreated cells could be due either to increased levels of enzymes mediating steps in excision repair at or before incision or to alterations in chromatin structure making damage sites in DNA more accessible to repair enzymes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号