首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Microfluidic chip-based nanoelectrode array as miniaturized biochemical sensing platform for prostate-specific antigen detection
Authors:Triroj Napat  Jaroenapibal Papot  Shi Haibin  Yeh Joanne I  Beresford Roderic
Institution:Division of Engineering, Brown University, 182 Hope Street, Providence, RI 02912, USA.
Abstract:A microfluidic biosensor chip with an embedded three-electrode configuration is developed for the study of the voltammetric response of a nanoelectrode array with controlled inter-electrode distance in a nanoliter-scale sample volume. The on-chip three-electrode cell consists of a 5 × 5 array of Au working nanoelectrodes with radii between 60 and 120 nm, a Cl(2)-plasma-treated Ag/AgCl reference electrode, and a Au counter electrode. The nanoelectrode array is fabricated by creating high-aspect-ratio pores through an alumina insulating layer using an I(2) gas-assisted focused-ion-beam (FIB) milling, ion beam sculpting, and electrodeposition of Au. The glass substrate with the electrode pattern is assembled with a polydimethylsiloxane (PDMS) microchannel slab giving a volume of 180 nL for each channel. Cyclic voltammetry calibration with a standard redox species exhibits a significant increase of current density by two orders of magnitude compared to that obtained from a microelectrode. On-chip functionalization of the nanoelectrodes with a prostate-specific antigen (PSA) biosensor complex and detection of PSA based on a competitive immunoassay method are performed. The detection limit is approximately 10 pg/mL (~270 fM), which corresponds to roughly 30,000 copies of PSA in the microchannel test volume.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号