The decomposition of apparent stresses in disturbed pulsatile flow in the presence of large scale organized structures |
| |
Authors: | B B Lieber |
| |
Affiliation: | Department of Mechanical and Aerospace Engineering, State University of New York, Buffalo 14260. |
| |
Abstract: | Flow disturbance phenomena that occur in unsteady-in-the-mean flows (i.e. pulsatile or oscillating) at moderate Reynolds numbers are analyzed in both the time domain and the frequency domain. The analysis utilizes variable decomposition into a time-varying underlying waveform and flow disturbances which are composed of large scale organized structures and random fluctuations. A practical technique which incorporates time domain phase conditioning, trend removal, and frequency domain matched filtering, is presented and examined using simulated data of known statistical behavior. The applicability of the method is shown by the decomposition of the simulated data and the technique is then applied to experimental data obtained in pulsatile flow through a constricted tube by means of a laser Doppler anemometer. The cross-sectional area reduction at the constriction throat was 90%. The Womersley parameter in the experiments was 5.3 and the Reynolds number based on the average flow rate per cycle was 300 with a minimum/maximum value of 55/600 based on the instantaneous flow rate. Measurements were taken in the flow region downstream of the constriction throat which included several interesting flow disturbance phenomena. The results of the decomposed flow phenomena demonstrate the significant role of large scale organized structures in such flows. This is particularly important when analyzing blood flow in the large arteries in the presence of severe stenosis or behind prosthetic devices in an attempt to estimate the 'turbulent' stress which act on cellular elements. Estimation of the apparent stress tensor is of importance in an effort to elucidate the mechanical factors which influence the durability of red blood cells under abnormal conditions. |
| |
Keywords: | |
|
|