首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Matrix Assisted Ionization Vacuum (MAIV), a New Ionization Method for Biological Materials Analysis Using Mass Spectrometry
Authors:Ellen D Inutan  Sarah Trimpin
Institution:From the ‡Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202
Abstract:The introduction of electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) for the mass spectrometric analysis of peptides and proteins had a dramatic impact on biological science. We now report that a wide variety of compounds, including peptides, proteins, and protein complexes, are transported directly from a solid-state small molecule matrix to gas-phase ions when placed into the vacuum of a mass spectrometer without the use of high voltage, a laser, or added heat. This ionization process produces ions having charge states similar to ESI, making the method applicable for high performance mass spectrometers designed for atmospheric pressure ionization. We demonstrate highly sensitive ionization using intermediate pressure MALDI and modified ESI sources. This matrix and vacuum assisted soft ionization method is suitable for the direct surface analysis of biological materials, including tissue, via mass spectrometry.The conversion of large and nonvolatile compounds such as proteins into gas-phase ions is of immense fundamental and practical importance. The 2002 Nobel Prize in Chemistry was awarded for the accomplishment of this conversion via electrospray ionization (ESI)1 (1) and matrix-assisted laser desorption/ionization (MALDI) (2) interfaced with mass spectrometry (MS) to obtain the molecular weights of proteins with high accuracy. These methods employ high voltage or a laser to form gaseous analyte ions from a wide variety of compounds in solution or a solid matrix, respectively.MALDI interfaced with a time-of-flight (TOF) mass spectrometer produces gas-phase analyte ions in vacuum and is the method of choice for the molecular imaging of biological surfaces. Ionization in vacuum provides excellent ion transmission (3), as well as good spatial resolution achieved using a focused laser beam. However, the analysis of protein complexes is very challenging with MALDI, requiring strategies such as first-shot phenomena (4) and chemical crosslinking (5). The necessity of a laser also makes MALDI less soft than ESI and produces background ions, which can hinder the analysis of small molecules (6, 7). MALDI is also of limited utility on high performance mass-to-charge (m/z) analyzers because of mass range issues related to the formation of singly charged ions, which also produce few fragment ions for structural characterization (8).Multiple charged ions produced directly from solution in ESI bring the m/z ratio within the range of high performance mass spectrometers, allowing the analysis of high-mass compounds. These instruments have advanced features for structural characterization, such as ion mobility spectrometry (IMS) for gas-phase separations (911), ultra-high mass resolution and mass accuracy (1214), and advanced fragmentation such as electron transfer dissociation (ETD) (13, 14). However, ESI is limited for surface characterization, requiring approaches such as desorption-ESI (15) and laser ablation ESI (16), ionization methods that produce multiply charged ions but are not compatible with analyses of larger proteins or fragile complexes.A softer ionization approach is needed in order to observe fragile molecules and molecular complexes in living organisms at low levels directly from tissue and cell cultures, without extensive sample preparation, while retaining spatial information. Ideally, this approach would be compatible with mass spectrometers having advanced capabilities to aid structural characterization directly from surfaces. The new ionization method described here, in which molecules are transferred from solid-phase to gas-phase ions through the simple exposure of a material of interest in a suitable matrix to vacuum, is an advance toward this goal and is of fundamental interest.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号