Targeted Proteomics of the Secretory Pathway Reveals the Secretome of Mouse Embryonic Fibroblasts and Human Embryonic Stem Cells
|
| |
Authors: | Prasenjit Sarkar Shan M. Randall David C. Muddiman Balaji M. Rao |
| |
Affiliation: | From the ‡Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695; ;§W.M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695 |
| |
Abstract: | Proteins endogenously secreted by human embryonic stem cells (hESCs) and those present in hESC culture medium are critical regulators of hESC self-renewal and differentiation. Current MS-based approaches for identifying secreted proteins rely predominantly on MS analysis of cell culture supernatants. Here we show that targeted proteomics of secretory pathway organelles is a powerful alternate approach for interrogating the cellular secretome. We have developed procedures to obtain subcellular fractions from mouse embryonic fibroblasts (MEFs) and hESCs that are enriched in secretory pathway organelles while ensuring retention of the secretory cargo. MS analysis of these fractions from hESCs cultured in MEF conditioned medium (MEF-CM) or MEFs exposed to hESC medium revealed 99 and 129 proteins putatively secreted by hESCs and MEFs, respectively. Of these, 53 and 62 proteins have been previously identified in cell culture supernatants of MEFs and hESCs, respectively, thus establishing the validity of our approach. Furthermore, 76 and 37 putatively secreted proteins identified in this study in MEFs and hESCs, respectively, have not been reported in previous MS analyses.The identification of low abundance secreted proteins via MS analysis of cell culture supernatants typically necessitates the use of altered culture conditions such as serum-free medium. However, an altered medium formulation might directly influence the cellular secretome. Indeed, we observed significant differences between the abundances of several secreted proteins in subcellular fractions isolated from hESCs cultured in MEF-CM and those exposed to unconditioned hESC medium for 24 h. In contrast, targeted proteomics of secretory pathway organelles does not require the use of customized media. We expect that our approach will be particularly valuable in two contexts highly relevant to hESC biology: obtaining a temporal snapshot of proteins secreted in response to a differentiation trigger, and identifying proteins secreted by cells that are isolated from a heterogeneous population.Human embryonic stem cells (hESCs)1 are pluripotent cells isolated from the inner cell mass of a pre-implantation blastocyst stage embryo (1). They have potential applications in regenerative medicine, are an attractive source of human cells for drug evaluation, and are useful models for understanding human development. The self-renewal or differentiation of hESCs is controlled by endogenous proteins secreted by hESCs and by exogenous factors present in cell culture medium (2, 3). For instance, hESCs are routinely cultured on feeder layers of mouse embryonic fibroblasts (MEFs) or on Matrigel-coated plates in mouse embryonic fibroblast–conditioned medium (MEF-CM). In these cases, cytokines secreted by MEFs and present in MEF-CM, together with cytokines and extracellular matrix (ECM) proteins secreted by hESCs, form a localized microenvironment that regulates hESC fate.The comprehensive identification of proteins secreted by MEFs and hESCs—their cellular secretome—can help unravel the molecular mechanisms that regulate hESC fate. Yet the use of MS-based approaches for secretome analysis remains challenging. In general, secretome studies of various cell types have relied on MS analysis of cell culture supernatants (reviewed in Ref. 4). However, such an approach typically results in the identification of small numbers of extracellular proteins. This was indeed the case with MS analysis of conditioned medium (CM) from MEFs or other feeder cells that support the maintenance of undifferentiated hESCs (5–8). A low abundance of secreted proteins of interest and a high concentration of serum proteins in cell culture media significantly impede MS analysis. To overcome these limitations, Bendall et al. implemented an iterative-exclusion MS (IE-MS) strategy, in conjunction with the use of medium without serum or serum replacer, for the identification of proteins secreted by MEFs and hESCs (2). Using this approach, large numbers of previously unreported proteins secreted by MEFs and hESCs could be identified, showing that IE-MS is a powerful strategy for the identification of low abundance proteins. However, the use of medium without serum or serum replacer for secretomic analysis can be problematic. Specifically, the use of a “blank” or serum-free medium might alter cellular physiology and, consequently, the profile of secreted proteins. Indeed, we observe that hESCs are highly prone to apoptosis under such growth conditions. Moreover, an analysis of the cell culture supernatant is not specifically targeted toward endogenously secreted ECM proteins, which are also an important component of the cellular microenvironment. ECM proteins form a matrix that associates with the cell and might not be present in the cell culture supernatant. Moreover, many growth factors are known to be sequestered by ECM proteins and might not be released into the culture medium (9). Here we present a rigorous evaluation of an alternate strategy to interrogate the entire cellular secretome, including cytokines and ECM proteins. Notably, our approach does not require the use of customized media lacking serum and serum replacers, and it is compatible with cell culture systems utilizing media of unknown or poorly defined composition, such as CM from MEFs.To identify the secretome of MEFs and hESCs, we carried out an MS analysis of their subcellular fractions that were enriched in secretory pathway organelles. The secretory pathway comprises the endoplasmic reticulum (ER), the Golgi apparatus, and the associated transport vesicles. Detailed MS analysis of these organelles identifies the secretory cargo (i.e. proteins destined to be secreted) in addition to the secretory pathway proteome (10). Indeed, we have previously identified several secreted proteins in hESCs as a result of contamination by the ER and Golgi (11) in our subcellular fractions. In light of these reports, we hypothesized that targeted proteomic analysis of the secretory pathway is a viable approach for comprehensive characterization of the cellular secretome. Accordingly, we developed protocols to isolate subcellular fractions enriched in the ER and Golgi compartments from MEFs and hESCs, and we subsequently carried out MS analysis on these samples. Several proteins secreted by MEFs and hESCs could be identified in this manner. Strikingly, the numbers of proteins identified were comparable to those obtained with the highly efficient IE-MS approach. Furthermore, we also show that short-term changes in medium composition affect the profile and quantitative levels of several proteins that transit through the secretory pathway, including secreted and membrane proteins. Taken together, our results validate the use of targeted secretory pathway proteomics as a powerful alternate approach to interrogate the cellular secretome. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|