Digitise This! A Quick and Easy Remote Sensing Method to Monitor the Daily Extent of Dredge Plumes |
| |
Authors: | Richard D. Evans Kathy L. Murray Stuart N. Field James A. Y. Moore George Shedrawi Barton G. Huntley Peter Fearns Mark Broomhall Lachlan I. W. McKinna Daniel Marrable |
| |
Affiliation: | 1. Department of Environment and Conservation, Kensington, Western Australia, Australia.; 2. Oceans Institute, University of Western Australia, Crawley, Western Australia, Australia.; 3. Remote Sensing and Satellite Research Group, Department of Imaging and Applied Physics, Curtin University, Bentley, Western Australia, Australia.; NASA Jet Propulsion Laboratory, United States of America, |
| |
Abstract: | Technological advancements in remote sensing and GIS have improved natural resource managers’ abilities to monitor large-scale disturbances. In a time where many processes are heading towards automation, this study has regressed to simple techniques to bridge a gap found in the advancement of technology. The near-daily monitoring of dredge plume extent is common practice using Moderate Resolution Imaging Spectroradiometer (MODIS) imagery and associated algorithms to predict the total suspended solids (TSS) concentration in the surface waters originating from floods and dredge plumes. Unfortunately, these methods cannot determine the difference between dredge plume and benthic features in shallow, clear water. This case study at Barrow Island, Western Australia, uses hand digitising to demonstrate the ability of human interpretation to determine this difference with a level of confidence and compares the method to contemporary TSS methods. Hand digitising was quick, cheap and required very little training of staff to complete. Results of ANOSIM R statistics show remote sensing derived TSS provided similar spatial results if they were thresholded to at least 3 mg L−1. However, remote sensing derived TSS consistently provided false-positive readings of shallow benthic features as Plume with a threshold up to TSS of 6 mg L−1, and began providing false-negatives (excluding actual plume) at a threshold as low as 4 mg L−1. Semi-automated processes that estimate plume concentration and distinguish between plumes and shallow benthic features without the arbitrary nature of human interpretation would be preferred as a plume monitoring method. However, at this stage, the hand digitising method is very useful and is more accurate at determining plume boundaries over shallow benthic features and is accessible to all levels of management with basic training. |
| |
Keywords: | |
|
|