首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Determination of strain energy function for arterial elastin: Experiments using histology and mechanical tests
Authors:Gundiah Namrata  B Ratcliffe Mark  A Pruitt Lisa
Institution:Department of Surgery, University of California, San Francisco, USA. gundiahn@surgery.ucsf.edu
Abstract:The long-range reversible deformation of vertebrate arteries is primarily mediated by elastin networks that endure several million deformation cycles without appreciable fatigue. To determine how elastin contributes to the composite arterial properties, we studied the three-dimensional microstructure and biomechanics of isolated elastin. We initially estimated the sensitivity of these studies by comparing two elastin isolation protocols, autoclaving and alkali-extraction, and measured their effect on isolated elastin using uniaxial tests and histology. These studies show that autoclaved tissues have a trend for higher modulus (900.79+/-678.02 kPa) than alkali-extracted samples (417.74+/-162.23 kPa)albeit with higher collagen-proteoglycan impurities, and (2) greater optical density (78.6+/-9.1%) than alkali-extracted groups (46.2+/-5.9%), suggesting that autoclaving is superior to alkali-extraction for biomechanical tests on elastin. Using these data we show that an isotopic Mooney-Rivlin model cannot adequately represent arterial elastin. The neo-Hookean model, with coefficient 162.57 (+/-115.44) kPa for autoclaved and 76.94 (+/-27.76) kPa for alkali-extracted samples, fits the uniaxial data better. Autoclaved elastins also show linear stress-strain response and equal stiffness in circumferential and axial directions suggesting equal number of layers in these directions and that elastin may help distribute tensile stresses during vessel inflation. Histology of autoclaved and control porcine arteries reveals axial elastin fibers in intimal and adventitial layers but circumferential medial fibers. We propose an orthotropic material symmetry for arterial elastin with two orthogonally oriented and symmetrically placed mechanically equivalent fibers. An exact form of the constitutive equation will be obtained in a future study.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号