Molecular therapeutic target for type-2 diabetes |
| |
Authors: | Chou Kuo-Chen |
| |
Affiliation: | Gordon Life Science Institute, San Diego, CA 92130, USA. kchou@san.rr.com |
| |
Abstract: | Many lines of evidences indicate that increased flux of glucose through the pathway, in which glutamine:fructose-6-phosphate amidotransferase (GFPT or GFAT) is a key catalyst while uridine-5'-diphosphate-N-acetylglucosamine (UDP-GlcNAc) functions as an energy sensor, can lead to the insulin resistance that is characteristic of Type-2 diabetes. In view of this, GFAT and its interaction mechanism with UDP-GlcNAc may become a novel therapeutic target for the treatment of type 2 diabetes. To stimulate the structure-based drug design, the three-dimensional structures of human GFAT1 monomer and dimer have been developed. It has been found by docking UDP-GlcNAc to the dimer (the smallest unit for catalyzing the substrate) that UDP-GlcNAc is bound to the interface of the dimer by 12 hydrogen bonds. On the basis of the docking results, a binding pocket of human GFAT1 dimer for UDP-GlcNAc is defined. All of these findings can serve as a reference or footing in developing new therapeutic strategy for the treatment of type-2 diabetes. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|