首页 | 本学科首页   官方微博 | 高级检索  
     


Determinants of substrate and cation affinities in the Na+/dicarboxylate cotransporter.
Authors:E S Kahn  A M Pajor
Affiliation:Department of Physiology, University of Arizona College of Medicine, Tucson, Arizona 85724, USA.
Abstract:The Na+/dicarboxylate cotransporter (NaDC-1) couples the transport of sodium and tricarboxylic acid cycle intermediates, such as succinate and citrate. The rabbit and human homologues (rbNaDC-1 and hNaDC-1, respectively) are 78% identical in amino acid sequence but exhibit several differences in their functional properties. rbNaDC-1 has a greater apparent affinity for citrate and sodium than hNaDC-1. Furthermore, unlike hNaDC-1, rbNaDC-1 is inhibited by low concentrations of lithium. In this study, chimeric transporters were constructed to identify the protein domains responsible for the functional differences between rbNaDC-1 and hNaDC-1. Individual substitutions of transmembrane domain (TMD) 7, 10 or 11 produced transporters with intermediate properties. However, substitution of TMD 7, 10, and 11 together resulted in a transporter with the citrate Km of the donor, suggesting that interactions between these domains determine the differences in apparent citrate affinities. TMDs 10 and 11 are most important in determining the differences in apparent sodium affinities, and TMD 11 determines the sensitivity to lithium inhibition. We conclude that transmembrane domains 7, 10, and 11 in NaDC-1 may contain at least one of the cation binding sites in close proximity to the substrate binding domain.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号