首页 | 本学科首页   官方微博 | 高级检索  
     


Glycosphingolipids during skeletal muscle cell differentiation: Comparison of normal and fusion-defective myoblasts
Authors:Laurence D. Cambron  Kenneth C. Leskawa
Affiliation:(1) Department of anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, 40292 Louisville, KY, USA
Abstract:The regulation of glycosphingolipid (GSL) synthesis in culture by fusion-competent (E63) myoblasts and fusion-defective (fu-1) cells was examined. Upon reaching confluency E63 cells fused to form multinucleated myotubes and demonstrated many characteristics of developing skeletal muscle including induction of creatine kinase activity and a shift in creatine kinase isozymes to the MM isoform. The fu-1 cells displayed none of these characteristics, despite the fact that both cells were cloned from the same parental myoblast line (rat L8). There was a transient increase in the synthesis of total neutral GSLs by E63 cells at the time of membrane fusion. In contrast, neutral GSL synthesis by fu-1 cells gradually decreased with time in culture. The major GSLs synthesized by both cell types were lactosylceramide and ganghoside GM3, with more complex structures being observed with prolonged time in culture. Several glycosyltransferase activities were assayed at varying times in culture. Generally, the changes in activities fell into three groups. One group was maximally activated at the end of the culture period (GalT-3, GalNAcT-1 and GalT-6). Another group was maximally activated during the time of active membrane fusion (GlcT and SAT-1). A third group was maximally activated at the time of cell contact and the beginning of membrane fusion (GlcNAcT-1 and GalT-2). In terms of the times of maximal activation there were few differences between E63 and fu-1 cells, with one notable exception. The activity of GalT-2 (lactosylceramide synthase) in E63 cells increased dramatically upon contact and the beginning of membrane fusion, whereas there were no changes in GalT-2 activity in fu-1 cells during time in culture. These results support our hypothesis that membrane glycosphingolipids play an important role in the differentiation of skeletal muscle cells.Abbreviations GSL glycosphingolipid - CK creatine kinase - HPTLC high performance thin layer chromatography - PMSF phenylmethylsulfonyl fluoride - CTH ceramide trihexoside (GbOse3Cer) - GlcCer glycosylceramide - LacC N-acetylglucosamine - NeuNAc N-acetylneuraminic acid (sialic acid)
Keywords:glycosphingolipid  ganglioside  glycosyltransferase  myoblast  muscle cell  myogenesis
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号