首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Endocytosis, intracellular transport, and turnover of anionic and cationic proteins in cultured mouse peritoneal macrophages
Authors:K Stenseth  U Hedin  J Thyberg
Abstract:It was previously shown that cultured mouse peritoneal macrophages ingest anionic derivatives of horseradish peroxidase (HRP) and ferritin by fluid-phase endocytosis and accumulate them in lysosomes. Cationic derivatives were taken up by adsorptive endocytosis and transported to lysosomes but subsequently appeared also in stacked cisternae, tubules, and vesicles of the Golgi complex. In the present investigation, the effect of molecular net charge on the rate of cellular inactivation of a protein was studied. The results demonstrate that anionized HRP was inactivated at a higher initial rate than cationized HRP. This is in agreement with the finding that the cationic protein partly escaped from the digestive compartment of the cells, that means the lysosomes. The effects of phorbol myristate acetate (PMA)--a diterpene ester and a tumor promoter--and monensin--a carboxylic ionophore and a perturbant of the Golgi complex--on fluid-phase endocytosis of HRP and intracellular transport of cationized ferritin (CF) were also studied. PMA stimulated fluid-phase endocytosis of HRP but did not interfere with transport of CF to the Golgi complex. Contrarily, monensin inhibited uptake of HRP and almost totally blocked transport of CF to the Golgi complex. The findings support the idea that membrane and content of endocytic vesicles are treated separately. The content is emptied into lysosomes where macromolecular material normally is degraded. The membrane becomes part of the lysosomal envelope in connection with endocytic vesicle-lysosome fusion. Subsequently, membrane patches are detached from the lysosomes and reutilized. This is at least partly mediated via the Golgi complex and particularly its tubular and vesicular parts. Since the cationic tracers do not bind to the membrane in a stable way, it is not possible to extend the conclusions to individual membrane constituents.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号