首页 | 本学科首页   官方微博 | 高级检索  
     


The GxxxG-containing transmembrane domain of the CCK4 oncogene does not encode preferential self-interactions
Authors:Kobus Felix J  Fleming Karen G
Affiliation:T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA.
Abstract:The recently cloned colon carcinoma kinase 4 (CCK4) oncogene contains an evolutionarily conserved GxxxG motif in its single transmembrane domain (TMD). It has previously been suggested that this pairwise glycine motif may provide a strong driving force for transmembrane helix-helix interactions. Since CCK4 is thought to represent a new member of the receptor tyrosine kinase family, interactions between the TMDs may be important in receptor self-association and activation of signal transduction pathways. To determine whether this conserved CCK4 TMD can drive protein-protein interactions, we have carried out a thermodynamic study using the TMD expressed as a Staphylococcal nuclease (SN) fusion protein. Similar SN-TMD fusion proteins have been used to determine the sequence specificity and thermodynamics of transmembrane helix-helix interactions in a number of membrane proteins, including glycophorin A. Using sedimentation equilibrium in C14 betaine micelles, we discovered that the CCK4 TMD is unable to drive strong protein-protein interactions. At high protein/detergent ratios, the SN-CCK4 fusion protein will dimerize, but a stochastic model for protein association in micelles can explain the observed dimer population. For low-affinity interactions such as the one studied here, an understanding of this discrete stochastic distribution of membrane proteins in micelles is important for distinguishing between preferential and random self-interactions, which can both influence the oligomeric population. The lack of a thermodynamically meaningful self-association propensity for the CCK4 TMDs demonstrates that a GxxxG motif is not sufficient to drive transmembrane helix-helix interactions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号