首页 | 本学科首页   官方微博 | 高级检索  
     


Rapid High-Yield Purification and Liposome Reconstitution of Polyhistidine-Tagged Sensory Rhodopsin I
Authors:Mark P. Krebs   Elena N. Spudich  John L. Spudich
Abstract:We have used Ni2+-affinity chromatography as a rapid and efficient method to purify a sensory rhodopsin I (SR-I) derivative containing six consecutive histidine residues at its C-terminus (His-tagged SR-I). The protein was expressed inHalobacterium salinariumby integrating the corresponding gene at the chromosomal bacterioopsin locus under the control of the bacterioopsin promoter. His-tagged SR-I retains native SR-I photochemical reactions in purified membranes and phototaxis signaling functionin vivo.Immobilized Ni2+-affinity chromatography of membranes solubilized in 1% lauryl maltoside provides a single-step purification of the protein to electrophoretic homogeneity (≥90% pure). The procedure yields 1.7 mg pure photoactive protein/liter of culture (60% efficiency). This yield combined with engineered overproduction of the protein provides at least 120-fold greater amounts than that of a previously reported multistep purification procedure, permitting structural and biochemical analysis previously not feasible. The purified protein in lauryl maltoside at pH 5.3 exhibits a visible absorption maximum at 587 nm characteristic of SR-I. Spectrometric titration reveals an alkaline-induced species at 550 nm previously observed with transducer-free SR-I in native membranes. A previously unreported structured absorption band at 400 nm, consistent with a deprotonated Schiff base, forms with the same pKaas the 550-nm species. His-tagged SR-I reconstituted into phosphatidylglycerol proteoliposomes retains properties of transducer-free SR-I in native membranes: its flash-induced absorption difference spectrum is identical, its photochemical reaction cycle kinetics show a similar pH dependence, and it forms a photoactive 550-nm species under alkaline conditions. These results indicate His-tagged SR-I reconstituted in proteoliposomes is suitable for analyzing SR-I interaction with its transducer proteinin vitro.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号