Direct pelletization in a rotary processor controlled by torque measurements. III. Investigation of microcrystalline cellulose and lactose grade |
| |
Authors: | Jakob Kristensen |
| |
Affiliation: | (1) Department of Pharmaceutics, The Danish University of Pharmaceutical Sciences, 2-Universitetsparken, DK-2100 Copenhagen O, Denmark |
| |
Abstract: | The aim of the present study was to investigate the use of different grades of microcrystalline cellulose (MCC) and lactose in a direct pelletization process in a rotary processor. For this purpose, a mixed 2- and 3-level factorial study was performed to determine the influence of the particle size of microcrystalline cellulose (MCC), (≈60 and 105 μm) and lactose (≈30, 40, and 55 μm), as well as MCC type (Avicel and Emcocel) on the pelletization process and the physical properties of the prepared pellets. A 1∶4 mixture of MCC and lactose was applied, and granulation liquid was added until a 0.45 Nm increase in the torque of the friction plate was reached. All combinations of the 3 factors resulted in spherical pellets of a high physical strength. The particle size of MCC was found to have no marked effect on the amount of water required for agglomerate growth or on the size of the resulting pellets. An increasing particle size of lactose gave rise to more spherical pellets of a more narrow size distribution as well as higher yields. The MCC type was found to affect both the release of the model drug from the prepared pellets and the size distribution. Generally, the determined influence of the investigated factors was small, and direct pelletization in a rotary processor was found to be a robust process, insensitive to variations in the particle size and type of MCC and the particle size of lactose. Published: October 24, 2005 |
| |
Keywords: | rotary processor direct pelletization torque measurement microcrystalline cellulose |
本文献已被 PubMed SpringerLink 等数据库收录! |
|