首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Interaction of nonylguanidine with the sodium channel.
Authors:R Morello  T Begenisich  W Trzos  and J K Reed
Abstract:Alkyl and aromatic guanidines interact strongly with the tetrodotoxin (TTX)- receptor site in eel electroplaque membranes, showing competition with TTX. That these guanidines could be useful as highly reversible small molecular weight blockers of Na+ currents is therefore suggested. We have investigated the mechanisms of interaction of one of these derivatives, nonylguanidine, by studying its effects on Na+ currents in squid giant axons using voltage clamp techniques. Although nonylguanidine competed with TTX for binding to eel electroplaque membrane fragments (Ki = 1.8 X 10(-5) M), it reversibly blocked both inward and outward Na+ currents in intact axons only if applied to the interior. In axons with the Na+ inactivation removed by papain nonylguanidine produced a time-dependent block very similar to that reported for strychnine and pancuronium. The reduction of steady-state currents in these axons was also voltage-dependent, with increasing block observed with increasing step depolarization. These results suggest that nonylguanidine binds to a site accessible from the axoplasmic side of the channel, simulating Na+ inactivation in papain-treated axons and competing with the normal inactivation process in untreated axons. The competition between internal nonylguanidine and external TTX may result from perturbation by the positively charged nonylguanidine of the TTX-binding site from within the channel itself.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号