首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Identification of two types of keratin polypeptides within the acidic cytokeratin subfamily I
Authors:JoséL Jorcano  Michael Rieger  Juergen K Franz  Dorothea L Schiller  Roland Moll  Werner W Franke
Institution:1. Division of Membrane Biology and Biochemistry Institute of Cell and Tumor Biology, German Cancer Research Center Im Neuenheimer Feld 280, D-6900 Heidelberg, Federal Republic of Germany;2. Center of Molecular Biology Heidelberg University of Heidelberg D-6900 Heidelberg, Federal Republic of Germany
Abstract:Cytoskeletal filaments of the α-keratin type (cytokeratins) are a characteristic of epithelial cells. In diverse mammals (man, cow and rodents) these cytokeratins consist of a family of approximately 20 polypeptides, which may be divided into the more acidic (I) and the more basic (II) subfamilies. These two subfamilies show only limited amino acid sequence homology. In contrast, nucleic acid hybridization experiments and peptide maps have been interpreted to show that polypeptides of the same subfamily share extended sequence homology.We compare two polypeptides of the acidic cytokeratin subfamily, VIb (Mr 54,000) and VII (Mr 50,000), which are co-expressed in large amounts in bovine epidermal keratinocytes. These two epidermal keratins can be distinguished by specific antibodies and show different patterns of expression among several bovine tissues and cultured cells. In addition, they differ in the stability of their complexes with basic keratin polypeptides and in their tryptic peptide maps. The amino acid sequences deduced from the nucleotide sequences of complementary DNA clones containing the 3′ ends of the messenger RNAs for these keratins are compared with each other and with available amino acid sequences of human, murine and amphibian epidermal keratins. Bovine keratins VIb and VII share considerable sequence homology in the α-helical portion (68% residues identical) but lack significant homology in the extrahelical portion. Bovine keratin VIb shows, in its α-helical region, a pronounced sequence homology (88% identity) to the murine epidermal keratin of Mr 59,000. In addition, the non-helical carboxy-terminal regions of both proteins are glycinerich and contain a canonic sequence GGGSGYGG, which may be repeated several times. Moreover, their mRNAs present a highly conserved stretch of 236 nucleotides containing, in the murine sequence, the end of the coding and all of the non-coding region (81% identical nucleotides). Bovine keratin VII is considerably different from the murine Mr 59,000 keratin but is almost identical to the human cytokeratin number 14 of Mr 50,000, both in the α-helical and in the non-α-helical regions of the proteins, and the mRNAs of the human and the bovine keratins also display a high homology in their 3′ non-coding ends.The results show that in the same species keratins of the same subfamily can differ considerably, whereas equivalent keratin polypeptides of different species are readily identified by characteristic sequence homologies in the α-helical and the non-helical regions as well as in the 3′ non-coding portions of their mRNAs. Among the members of the acidic subfamily I of cytokeratin polypeptides that are co-expressed in bovine epidermis, at least two types can be distinguished by their carboxy-terminal sequences. One type is characterized by its abundance of glycine residues, a consensus GGGSGYGG heptapeptide sequence, which may be repeated several times, and an extended stretch of high RNA sequence homology in the 3′ non-coding part. The other type shows a predominance of serine and valine residues, a subterminal GGGSGYGG sequence (which has been maintained in Xenopus, cow and man) and also a high level of homology in the 3′ non-coding part of the mRNA. The data indicate that individual keratin type specificity overrides species diversity, both at the protein and the mRNA level. We discuss the evolutionary conservation and the tissue distribution of these two types of acidic keratin polypeptides as well as their possible biological functions.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号