首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of Chronic Nicotine Treatment on the Accumulation of [3H]Tetraphenylphosphonium by Cerebral Cortical Synaptosomes
Authors:Cecilia J. Hillard  Jody J. Pounds
Affiliation:Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A.
Abstract:Abstract: Chronic exposure of rats to nicotine increases the number of [3H]nicotine binding sites in the brain; however, it is not clear whether nicotinic cholinergic receptor function is altered as well. In this study, we have used [3H]tetraphenylphosphonium as a probe of synaptosomal membrane potential to investigate whether exposure to nicotine in vivo alters the ability of cerebral cortical synaptosomes to maintain a potential difference and to depolarize in response to in vitro nicotine. Treatment of rats for 14 days with 0.475 mg of nicotine base/day via subcutaneously implanted minipumps resulted in a decrease in the synaptosomal accumulation of [3H]tetraphenylphosphonium in physiological buffer, corresponding to a decrease in estimated membrane potential from –55 mV to –50 mV. The onset of the decrease in membrane potential occurred after 7 days of in vivo nicotine treatment and was significantly correlated with an increase in [3H]nicotine binding to cerebral cortical synaptosomal (P2) membranes. Nicotine, at in vitro concentrations of 3–1,000 μ M , decreased [3H]tetraphenylphosphonium accumulation in cerebral cortical synaptosomes from control animals. When compared to accumulation in buffer alone, in vitro nicotine and other nicotinic agonists did not significantly decrease [3H]tetraphenylphosphonium accumulation in cerebral cortical synaptosomes prepared from rats treated with nicotine in vivo. These studies provide evidence that chronic treatment with nicotine results in an average lower membrane potential in cerebral cortical synaptosomes and in functional down-regulation of the depolarization response to nicotinic cholinergic receptor stimulation.
Keywords:Nicotine    Nicotinic cholinergic receptor    Tetraphenylphosphonium    Membrane potential    Synaptosomes    Chronic treatment
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号