首页 | 本学科首页   官方微博 | 高级检索  
     


Periodic oscillations and backward bifurcation in a model for the dynamics of malaria transmission
Authors:Ngonghala Calistus N  Ngwa Gideon A  Teboh-Ewungkem Miranda I
Affiliation:National Institute for Mathematical and Biological Synthesis (NIMBioS), University of Tennessee, Knoxville, TN 37996, USA.
Abstract:A deterministic ordinary differential equation model for the dynamics of malaria transmission that explicitly integrates the demography and life style of the malaria vector and its interaction with the human population is developed and analyzed. The model is different from standard malaria transmission models in that the vectors involved in disease transmission are those that are questing for human blood. Model results indicate the existence of nontrivial disease free and endemic steady states, which can be driven to instability via a Hopf bifurcation as a parameter is varied in parameter space. Our model therefore captures oscillations that are known to exist in the dynamics of malaria transmission without recourse to external seasonal forcing. Additionally, our model exhibits the phenomenon of backward bifurcation. Two threshold parameters that can be used for purposes of control are identified and studied, and possible reasons why it has been difficult to eradicate malaria are advanced.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号