首页 | 本学科首页   官方微博 | 高级检索  
     


Structural and functional features of yeast V-ATPase subunit C
Authors:Drory Omri  Nelson Nathan
Affiliation:Department of Biochemistry, The George S. Wise Faculty of Life Sciences, The Daniella Rich Institute for Structural Biology, Tel Aviv University, Tel Aviv 69978, Israel.
Abstract:V-ATPase is a multi-subunit membrane protein complex, it translocates protons across biological membranes, generating electrical and pH gradients which are used for varieties of cellular processes. V-ATPase is composed of two distinct sub-complexes: a membrane bound V0 sub-complex, composed of 6 different subunits, which is responsible for proton transport and a soluble cytosolic facing V1 sub-complex, composed of 8 different subunits which hydrolyse ATP. The two sub-complexes are held together via a flexible stator. One of the main features of eukaryotic V-ATPase is its ability to reversibly dissociate to its sub-complexes in response to changing cellular conditions, which arrest both proton translocation and ATP hydrolysis, suggesting a regulation function. Subunit C (vma5p in yeast) was shown by several biochemical, genetic and recent structural data to function as a flexible stator holding the two sectors of the complex together and regulating the reversible association/dissociation of the complex, partly via association with F-actin filaments. Structural features of subunit C that allow smooth energy conversion and interaction with actin and nucleotides are discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号