首页 | 本学科首页   官方微博 | 高级检索  
     


Oxaloacetate hydrolase, the C-C bond lyase of oxalate secreting fungi
Authors:Han Ying  Joosten Henk-Jan  Niu Weiling  Zhao Zhiming  Mariano Patrick S  McCalman Melisa  van Kan Jan  Schaap Peter J  Dunaway-Mariano Debra
Affiliation:Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, USA.
Abstract:Oxalate secretion by fungi is known to be associated with fungal pathogenesis. In addition, oxalate toxicity is a concern for the commercial application of fungi in the food and drug industries. Although oxalate is generated through several different biochemical pathways, oxaloacetate acetylhydrolase (OAH)-catalyzed hydrolytic cleavage of oxaloacetate appears to be an especially important route. Below, we report the cloning of the Botrytis cinerea oahA gene and the demonstration that the disruption of this gene results in the loss of oxalate formation. In addition, through complementation we have shown that the intact B. cinerea oahA gene restores oxalate production in an Aspergillus niger mutant strain, lacking a functional oahA gene. These observations clearly indicate that oxalate production in A. niger and B. cinerea is solely dependent on the hydrolytic cleavage of oxaloacetate catalyzed by OAH. In addition, the B. cinera oahA gene was overexpressed in Escherichia coli and the purified OAH was used to define catalytic efficiency, substrate specificity, and metal ion activation. These results are reported along with the discovery of the mechanism-based, tight binding OAH inhibitor 3,3-difluorooxaloacetate (K(i) = 68 nM). Finally, we propose that cellular uptake of this inhibitor could reduce oxalate production.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号