首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A neural theory of circadian rhythms: split rhythms, after-effects and motivational interactions
Authors:G A Carpenter  S Grossberg
Institution:Department of Mathematics, Northeastern University, Boston and Center for Adaptive Systems, Department of Mathematics, Boston University, Boston, Massachusetts 02215, U.S.A.;Center for Adaptive Systems, Department of Mathematics, Boston University, Boston, Massachusetts 02215, U.S.A.
Abstract:A neural theory of the circadian pacemaker within the hypothalamic suprachiasmatic nuclei (SCN) is used to explain parametric data about mammalian operant behavior. The intensity, duration, and patterning of ultradian activity-rest cycles and the duration of circadian periods due to parametric (LL) and nonparametric (LD) lighting regimes are simulated. Paradoxical data about split rhythms and after-effects are explained using homeostatic and nonhomeostatic neural mechanisms that modulate pacemaker activity. These modulatory mechanisms enable the pacemaker to adjust to pervasive changes in its lighting regime, as during the passage of seasons, and to ultradian changes in internal metabolic conditions. The model circadian mechanisms are homologous to mechanisms that model hypothalamically mediated appetitive behaviors, such as eating. The theory thus suggests that both circadian and appetitive hypothalamic circuits are constructed from similar neural components. Mechanisms of transmitter habituation, opponent feedback interactions between on-cells and off-cells, homeostatic negative feedback, and conditioning are used in both the circadian and the appetitive circuits. Output from the SCN circadian pacemaker is assumed to modulate the sensitivity of the appetitive circuits to external and internal signals by controlling their level of arousal. Both underarousal and overarousal can cause abnormal behavioral syndromes whose properties have been found in clinical data. A model pacemaker can also be realized as an intracellular system.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号