首页 | 本学科首页   官方微博 | 高级检索  
     


Pentavalent methylated arsenicals are substrates of human AQP9
Authors:Joseph R. McDermott  Xuan Jiang  Lauren C. Beene  Barry P. Rosen  Zijuan Liu
Affiliation:(1) Department of Biological Sciences, Oakland University, Dodge Hall 325, 2200 N. Squirrel Rd, Rochester, MI 48309, USA;(2) Departments of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, 540 E. Canfield Ave, Detroit, MI 48201, USA;(3) Florida International University, College of Medicine, 11200 SW 8th Street, HLS II 693, Miami, FL 33199, USA;
Abstract:Liver aquaglyceroporin AQP9 facilitates movement of trivalent inorganic arsenite (AsIII) and organic monomethylarsonous acid (MAsIII). However, the transport pathway for the two major pentavalent arsenic cellular metabolites, MAsV and DMAsV, remains unknown in mammals. These products of arsenic metabolism, in particular DMAsV, are the major arsenicals excreted in the urine of mammals. In this study, we examined the uptake of the two pentavalent organic arsenicals by human AQP9 in Xenopus laevis oocytes. Xenopus laevis oocytes microinjected with AQP9 cRNA exhibited uptake of both MAsV and DMAsV in a pH-dependent manner. The rate of transport was much higher at acidic pH (pH5.5) than at neutral pH. Hg(II), an aquaporin inhibitor, inhibited transport of AsIII, MAsIII, MAsV and DMAsV via AQP9. However, phloretin, which inhibits water and glycerol permeation via AQP9, can only inhibit transport of pentavalent MAsV and DMAsV but not trivalent AsIII and MAsIII, indicating the translocation mechanisms of these arsenic species are not exactly the same. Reagents such as FCCP, valinomycin and nigericin that dissipate transmembrane proton potential or change the transmemebrane pH gradient did not significantly inhibit all arsenic transport via AQP9, suggesting the transport of pentavalent arsenic is not proton coupled. The results suggest that in addition to the initial uptake of trivalent inorganic AsIII inside cells, AQP9 plays a dual role in the detoxification of arsenic metabolites by facilitating efflux from cells.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号