首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Unfolding and extraction of a transmembrane alpha-helical peptide: dynamic force spectroscopy and molecular dynamics simulations
Authors:Contera Sonia Antoranz  Lemaître Vincent  de Planque Maurits R R  Watts Anthony  Ryan John F
Institution:Bionanotechnology IRC, Physics Department, University of Oxford, Oxford OX1 3PU, United Kingdom. s.antoranzcontera@physics.ox.ac.uk
Abstract:An atomic force microscope (AFM) was used to visualize CWALP(19)23 peptides ((+)H(3)N-ACAGAWWLALALALALALALWWA-COO(-)) inserted in gel-phase DPPC and DSPC bilayers. The peptides assemble in stable linear structures and domains. A model for the organization of the peptides is given from AFM images and a 20 ns molecular dynamics (MD) simulation. Gold-coated AFM cantilevers were used to extract single peptides from the bilayer through covalent bonding to the cystein residue. Experimental and simulated force curves show two distinct force maxima. In the simulations these two maxima correspond to the extraction of the two pairs of tryptophan residues from the membrane. Unfolding of the peptide precedes extraction of the second distal set of tryptophans. To probe the energies involved, AFM force curves were obtained from 10 to 10(4) nm/s and MD force curves were simulated with 10(8)-10(11) nm/s pulling velocities (V). The velocity relationship with the force, F, was fitted to two fluctuation adhesive potential models. The first assumes the pulling produces a constant bias in the potential and predicts an F approximately ln (V) relationship. The second takes into account the ramped bias that the linker feels as it is being driven out of the adhesion complex and scales as F approximately (ln V)2/3.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号