首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mammalian PIG-X and yeast Pbn1p are the essential components of glycosylphosphatidylinositol-mannosyltransferase I
Authors:Ashida Hisashi  Hong Yeongjin  Murakami Yoshiko  Shishioh Nobue  Sugimoto Nakaba  Kim Youn Uck  Maeda Yusuke  Kinoshita Taroh
Institution:Department of Immunoregulation, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.
Abstract:Within the endoplasmic reticulum (ER), mannoses and glucoses, donated from dolichol-phosphate-mannose and -glucose, are transferred to N-glycan and GPI-anchor precursors, and serine/threonine residues in many proteins. Glycosyltransferases that mediate these reactions are ER-resident multitransmembrane proteins with common characteristics, forming a superfamily of >10 enzymes. Here, we report an essential component of glycosylphosphatidylinositol-mannosyltransferase I (GPI-MT-I), which transfers the first of the four mannoses in the GPI-anchor precursors. We isolated a Chinese hamster ovary (CHO) cell mutant defective in GPI-MT-I but not its catalytic component PIG-M. The mutant gene, termed phosphatidylinositolglycan-class X (PIG-X), encoded a 252-amino acid ER-resident type I transmembrane protein with a large lumenal domain. PIG-X and PIG-M formed a complex, and PIG-M expression was <10% in the absence of PIG-X, indicating that PIG-X stabilizes PIG-M. We found that Saccharomyces cerevisiae Pbn1p/YCL052Cp, which was previously reported to be involved in autoprocessing of proproteinase B, is the functional homologue of PIG-X; Pbn1p is critical for Gpi14p/YJR013Wp function, the yeast homologue of PIG-M. This is the first report of an essential subcomponent of glycosyltransferases using dolichol-phosphate-monosaccharide.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号